A bayesian framework for regularized SVM parameter estimation

Jens Gregor, Zhenqiu Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

The support vector machine (SVM) is considered here in the context of pattern classification. The emphasis is on the soft margin classifier which uses regularization to handle non-separable learning samples. We present an SVM parameter estimation algorithm that first identifies a subset of the learning samples that we call the support set and then determines not only the weights of the classifier but also the hyperparameter that controls the influence of the regularizing penalty term on basis thereof. We provide numerical results using several data sets from the public domain.

Original languageEnglish (US)
Title of host publicationProceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004
EditorsR. Rastogi, K. Morik, M. Bramer, X. Wu
Pages99-105
Number of pages7
DOIs
StatePublished - Dec 1 2004
Externally publishedYes
EventProceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004 - Brighton, United Kingdom
Duration: Nov 1 2004Nov 4 2004

Other

OtherProceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004
CountryUnited Kingdom
CityBrighton
Period11/1/0411/4/04

Fingerprint

Parameter estimation
Support vector machines
Classifiers
Set theory
Pattern recognition

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this

Gregor, J., & Liu, Z. (2004). A bayesian framework for regularized SVM parameter estimation. In R. Rastogi, K. Morik, M. Bramer, & X. Wu (Eds.), Proceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004 (pp. 99-105) https://doi.org/10.1109/ICDM.2004.10094

A bayesian framework for regularized SVM parameter estimation. / Gregor, Jens; Liu, Zhenqiu.

Proceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004. ed. / R. Rastogi; K. Morik; M. Bramer; X. Wu. 2004. p. 99-105.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Gregor, J & Liu, Z 2004, A bayesian framework for regularized SVM parameter estimation. in R Rastogi, K Morik, M Bramer & X Wu (eds), Proceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004. pp. 99-105, Proceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004, Brighton, United Kingdom, 11/1/04. https://doi.org/10.1109/ICDM.2004.10094
Gregor J, Liu Z. A bayesian framework for regularized SVM parameter estimation. In Rastogi R, Morik K, Bramer M, Wu X, editors, Proceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004. 2004. p. 99-105 https://doi.org/10.1109/ICDM.2004.10094
Gregor, Jens ; Liu, Zhenqiu. / A bayesian framework for regularized SVM parameter estimation. Proceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004. editor / R. Rastogi ; K. Morik ; M. Bramer ; X. Wu. 2004. pp. 99-105
@inproceedings{61b15b578d194f728f0bb7fa6ffbf4fb,
title = "A bayesian framework for regularized SVM parameter estimation",
abstract = "The support vector machine (SVM) is considered here in the context of pattern classification. The emphasis is on the soft margin classifier which uses regularization to handle non-separable learning samples. We present an SVM parameter estimation algorithm that first identifies a subset of the learning samples that we call the support set and then determines not only the weights of the classifier but also the hyperparameter that controls the influence of the regularizing penalty term on basis thereof. We provide numerical results using several data sets from the public domain.",
author = "Jens Gregor and Zhenqiu Liu",
year = "2004",
month = "12",
day = "1",
doi = "10.1109/ICDM.2004.10094",
language = "English (US)",
isbn = "0769521428",
pages = "99--105",
editor = "R. Rastogi and K. Morik and M. Bramer and X. Wu",
booktitle = "Proceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004",

}

TY - GEN

T1 - A bayesian framework for regularized SVM parameter estimation

AU - Gregor, Jens

AU - Liu, Zhenqiu

PY - 2004/12/1

Y1 - 2004/12/1

N2 - The support vector machine (SVM) is considered here in the context of pattern classification. The emphasis is on the soft margin classifier which uses regularization to handle non-separable learning samples. We present an SVM parameter estimation algorithm that first identifies a subset of the learning samples that we call the support set and then determines not only the weights of the classifier but also the hyperparameter that controls the influence of the regularizing penalty term on basis thereof. We provide numerical results using several data sets from the public domain.

AB - The support vector machine (SVM) is considered here in the context of pattern classification. The emphasis is on the soft margin classifier which uses regularization to handle non-separable learning samples. We present an SVM parameter estimation algorithm that first identifies a subset of the learning samples that we call the support set and then determines not only the weights of the classifier but also the hyperparameter that controls the influence of the regularizing penalty term on basis thereof. We provide numerical results using several data sets from the public domain.

UR - http://www.scopus.com/inward/record.url?scp=19544392137&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=19544392137&partnerID=8YFLogxK

U2 - 10.1109/ICDM.2004.10094

DO - 10.1109/ICDM.2004.10094

M3 - Conference contribution

SN - 0769521428

SN - 9780769521428

SP - 99

EP - 105

BT - Proceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004

A2 - Rastogi, R.

A2 - Morik, K.

A2 - Bramer, M.

A2 - Wu, X.

ER -