Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat

Mark Ledoux, Joan F. Lorden

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

The genetically dystonic rat is an autosomal recessive mutant with a movement disorder that closely resembles the generalized dystonias seen in humans. Abnormal activity of neurons within the cerebellar nuclei is critical to the dystonic rat motor syndrome. Increased glutamic acid decarboxylase activity, increased glucose utilization, and decreased muscimol binding within the cerebellar nuclei of the dystonic rat suggests that Purkinje cell firing rates are increased in these animals. However, under urethane anesthesia, Purkinje cell simple spike firing rates in dystonic rats were less than half the rates seen in normal littermates. In this study, both spontaneous and harmaline-stimulated single-unit Purkinje cell recordings were obtained from awake normal and dystonic rats. In striking contrast to previous results obtained under urethane anesthesia, there was no statistically significant difference in average Purkinje cell spontaneous simple spike frequency between dystonic and normal rats. Similar to previous studies obtained under urethane anesthesia, Purkinje cell spontaneous complex spike frequency was much lower in dystonic than in normal rats. Many Purkinje cells from dystonic rats, particularly those from the vermis or older animals, exhibited rhythmic bursting simple spike firing patterns. Cross-correlations showed that complex spikes produced less suppression of simple spikes in dystonic than in normal rats and harmaline-stimulated complex spike activity was, on average, faster and more rhythmic in normal than in dystonic rats. These findings indicate that olivocerebellar network abnormalities in the dystonic rat are not due to an inability of Purkinje cells to fire at normal rates and suggest that abnormal Purkinje cell bursting firing patterns in the dystonic rat are due to a defect in the pathway from the inferior olive to climbing fiber synapses on Purkinje cells.

Original languageEnglish (US)
Pages (from-to)457-467
Number of pages11
JournalExperimental Brain Research
Volume145
Issue number4
DOIs
StatePublished - Sep 18 2002

Fingerprint

Harmaline
Purkinje Cells
Urethane
Cerebellar Nuclei
Anesthesia
Muscimol
Glutamate Decarboxylase
Dystonia
Movement Disorders
Synapses

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Cite this

Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat. / Ledoux, Mark; Lorden, Joan F.

In: Experimental Brain Research, Vol. 145, No. 4, 18.09.2002, p. 457-467.

Research output: Contribution to journalArticle

@article{c6c11e76ff5a42c0854cd70f1a03fa0c,
title = "Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat",
abstract = "The genetically dystonic rat is an autosomal recessive mutant with a movement disorder that closely resembles the generalized dystonias seen in humans. Abnormal activity of neurons within the cerebellar nuclei is critical to the dystonic rat motor syndrome. Increased glutamic acid decarboxylase activity, increased glucose utilization, and decreased muscimol binding within the cerebellar nuclei of the dystonic rat suggests that Purkinje cell firing rates are increased in these animals. However, under urethane anesthesia, Purkinje cell simple spike firing rates in dystonic rats were less than half the rates seen in normal littermates. In this study, both spontaneous and harmaline-stimulated single-unit Purkinje cell recordings were obtained from awake normal and dystonic rats. In striking contrast to previous results obtained under urethane anesthesia, there was no statistically significant difference in average Purkinje cell spontaneous simple spike frequency between dystonic and normal rats. Similar to previous studies obtained under urethane anesthesia, Purkinje cell spontaneous complex spike frequency was much lower in dystonic than in normal rats. Many Purkinje cells from dystonic rats, particularly those from the vermis or older animals, exhibited rhythmic bursting simple spike firing patterns. Cross-correlations showed that complex spikes produced less suppression of simple spikes in dystonic than in normal rats and harmaline-stimulated complex spike activity was, on average, faster and more rhythmic in normal than in dystonic rats. These findings indicate that olivocerebellar network abnormalities in the dystonic rat are not due to an inability of Purkinje cells to fire at normal rates and suggest that abnormal Purkinje cell bursting firing patterns in the dystonic rat are due to a defect in the pathway from the inferior olive to climbing fiber synapses on Purkinje cells.",
author = "Mark Ledoux and Lorden, {Joan F.}",
year = "2002",
month = "9",
day = "18",
doi = "10.1007/s00221-002-1127-4",
language = "English (US)",
volume = "145",
pages = "457--467",
journal = "Experimental Brain Research",
issn = "0014-4819",
publisher = "Springer Verlag",
number = "4",

}

TY - JOUR

T1 - Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat

AU - Ledoux, Mark

AU - Lorden, Joan F.

PY - 2002/9/18

Y1 - 2002/9/18

N2 - The genetically dystonic rat is an autosomal recessive mutant with a movement disorder that closely resembles the generalized dystonias seen in humans. Abnormal activity of neurons within the cerebellar nuclei is critical to the dystonic rat motor syndrome. Increased glutamic acid decarboxylase activity, increased glucose utilization, and decreased muscimol binding within the cerebellar nuclei of the dystonic rat suggests that Purkinje cell firing rates are increased in these animals. However, under urethane anesthesia, Purkinje cell simple spike firing rates in dystonic rats were less than half the rates seen in normal littermates. In this study, both spontaneous and harmaline-stimulated single-unit Purkinje cell recordings were obtained from awake normal and dystonic rats. In striking contrast to previous results obtained under urethane anesthesia, there was no statistically significant difference in average Purkinje cell spontaneous simple spike frequency between dystonic and normal rats. Similar to previous studies obtained under urethane anesthesia, Purkinje cell spontaneous complex spike frequency was much lower in dystonic than in normal rats. Many Purkinje cells from dystonic rats, particularly those from the vermis or older animals, exhibited rhythmic bursting simple spike firing patterns. Cross-correlations showed that complex spikes produced less suppression of simple spikes in dystonic than in normal rats and harmaline-stimulated complex spike activity was, on average, faster and more rhythmic in normal than in dystonic rats. These findings indicate that olivocerebellar network abnormalities in the dystonic rat are not due to an inability of Purkinje cells to fire at normal rates and suggest that abnormal Purkinje cell bursting firing patterns in the dystonic rat are due to a defect in the pathway from the inferior olive to climbing fiber synapses on Purkinje cells.

AB - The genetically dystonic rat is an autosomal recessive mutant with a movement disorder that closely resembles the generalized dystonias seen in humans. Abnormal activity of neurons within the cerebellar nuclei is critical to the dystonic rat motor syndrome. Increased glutamic acid decarboxylase activity, increased glucose utilization, and decreased muscimol binding within the cerebellar nuclei of the dystonic rat suggests that Purkinje cell firing rates are increased in these animals. However, under urethane anesthesia, Purkinje cell simple spike firing rates in dystonic rats were less than half the rates seen in normal littermates. In this study, both spontaneous and harmaline-stimulated single-unit Purkinje cell recordings were obtained from awake normal and dystonic rats. In striking contrast to previous results obtained under urethane anesthesia, there was no statistically significant difference in average Purkinje cell spontaneous simple spike frequency between dystonic and normal rats. Similar to previous studies obtained under urethane anesthesia, Purkinje cell spontaneous complex spike frequency was much lower in dystonic than in normal rats. Many Purkinje cells from dystonic rats, particularly those from the vermis or older animals, exhibited rhythmic bursting simple spike firing patterns. Cross-correlations showed that complex spikes produced less suppression of simple spikes in dystonic than in normal rats and harmaline-stimulated complex spike activity was, on average, faster and more rhythmic in normal than in dystonic rats. These findings indicate that olivocerebellar network abnormalities in the dystonic rat are not due to an inability of Purkinje cells to fire at normal rates and suggest that abnormal Purkinje cell bursting firing patterns in the dystonic rat are due to a defect in the pathway from the inferior olive to climbing fiber synapses on Purkinje cells.

UR - http://www.scopus.com/inward/record.url?scp=0036038893&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036038893&partnerID=8YFLogxK

U2 - 10.1007/s00221-002-1127-4

DO - 10.1007/s00221-002-1127-4

M3 - Article

VL - 145

SP - 457

EP - 467

JO - Experimental Brain Research

JF - Experimental Brain Research

SN - 0014-4819

IS - 4

ER -