Arachidonic acid activates jun N-terminal kinase in vascular smooth muscle cells

Nageswara R. Madamanchi, Richard D. Bukoski, Marschall S. Runge, Rao Gadiparthi

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

We have previously demonstrated that arachidonic acid activates extracellular signal-regulated protein kinases (ERKs) group of mitogen-activated protein kinases (MAPKs) in vascular smooth muscle cells (VSMC). To understand the role of arachidonic acid in cellular signaling events, we have now studied its effect on jun N-terminal kinases (JNKs) group of MAPKs in VSMC. Arachidonic acid activated JNK1 in a time- and concentration-dependent manner with maximum effects at 10 min and 50 μM. Induced activation of JNK1 by arachidonic acid is specific as other fatty acids such as linoleic and stearic acids had no such effect. Indomethacin and nordihydroguaiaretic acid (NDGA), potent inhibitors of the cyclooxygenase (COX) and the lipoxygenase (LOX)/monooxygenase (MOX) pathways, respectively, had no effect on arachidonic acid activation of JNK1 suggesting that the observed phenomenon is independent of its metabolism through either pathway. However, 12-hydroperoxyeicosatetraenoic acid (12-HpETE), the LOX metabolite of arachidonic acid significantly induced JNK1 activity. Protein kinase C (PKC) depletion by prolonged treatment of VSMC with phorbol 12-myristate 13-acetate (PMA) resulted in partial decrease in the responsiveness of JNK1 to arachidonic acid suggesting a role for both PKC-dependent and -independent mechanisms in the activation of JNK1 by this important fatty acid. On the other hand, the responsiveness of JNK1 to 12-HpETE was completely abolished in PKC-depleted cells, suggesting a major role for PKC in 12-HpETE-induced JNK1 activation. IL-1β and TNF-α activated JNK1 in a time-dependent manner with maximum effect at 10 min. Desensitization of JNK1 by arachidonic acid significantly reduced its responsiveness to both the cytokines. In addition, 4-bromophenacyl bromide (4-BPB), a potent and selective inhibitor of phospholipase A2 (PLA2), significantly attenuated the cytokine-induced activation of JNK1. Together, these results show that (1) arachidonic acid and its LOX metabolite, 12-HpETE, activate JNK1 in VSMC, (2) PKC-dependent and -independent mechanisms play a role in the activation of JNK1 by arachidonic acid and 12-HpETE, and (3) arachidonic acid mediates, at least partially, the cytokine-induced activation of JNK1.

Original languageEnglish (US)
Pages (from-to)417-422
Number of pages6
JournalOncogene
Volume16
Issue number3
DOIs
StatePublished - Jan 22 1998

Fingerprint

Vascular Smooth Muscle
Arachidonic Acid
Smooth Muscle Myocytes
Phosphotransferases
Protein Kinase C
Arachidonate Lipoxygenases
Acids
Cytokines
Mitogen-Activated Protein Kinases
Fatty Acids
Stearic Acids
Masoprocol
Lipoxygenase Inhibitors
Cyclooxygenase Inhibitors
Extracellular Signal-Regulated MAP Kinases
Mixed Function Oxygenases
Interleukin-1
Indomethacin
Protein Kinases
Acetates

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Genetics
  • Cancer Research

Cite this

Arachidonic acid activates jun N-terminal kinase in vascular smooth muscle cells. / Madamanchi, Nageswara R.; Bukoski, Richard D.; Runge, Marschall S.; Gadiparthi, Rao.

In: Oncogene, Vol. 16, No. 3, 22.01.1998, p. 417-422.

Research output: Contribution to journalArticle

Madamanchi, Nageswara R. ; Bukoski, Richard D. ; Runge, Marschall S. ; Gadiparthi, Rao. / Arachidonic acid activates jun N-terminal kinase in vascular smooth muscle cells. In: Oncogene. 1998 ; Vol. 16, No. 3. pp. 417-422.
@article{9b0e703491a1442da0bb35ec356286c3,
title = "Arachidonic acid activates jun N-terminal kinase in vascular smooth muscle cells",
abstract = "We have previously demonstrated that arachidonic acid activates extracellular signal-regulated protein kinases (ERKs) group of mitogen-activated protein kinases (MAPKs) in vascular smooth muscle cells (VSMC). To understand the role of arachidonic acid in cellular signaling events, we have now studied its effect on jun N-terminal kinases (JNKs) group of MAPKs in VSMC. Arachidonic acid activated JNK1 in a time- and concentration-dependent manner with maximum effects at 10 min and 50 μM. Induced activation of JNK1 by arachidonic acid is specific as other fatty acids such as linoleic and stearic acids had no such effect. Indomethacin and nordihydroguaiaretic acid (NDGA), potent inhibitors of the cyclooxygenase (COX) and the lipoxygenase (LOX)/monooxygenase (MOX) pathways, respectively, had no effect on arachidonic acid activation of JNK1 suggesting that the observed phenomenon is independent of its metabolism through either pathway. However, 12-hydroperoxyeicosatetraenoic acid (12-HpETE), the LOX metabolite of arachidonic acid significantly induced JNK1 activity. Protein kinase C (PKC) depletion by prolonged treatment of VSMC with phorbol 12-myristate 13-acetate (PMA) resulted in partial decrease in the responsiveness of JNK1 to arachidonic acid suggesting a role for both PKC-dependent and -independent mechanisms in the activation of JNK1 by this important fatty acid. On the other hand, the responsiveness of JNK1 to 12-HpETE was completely abolished in PKC-depleted cells, suggesting a major role for PKC in 12-HpETE-induced JNK1 activation. IL-1β and TNF-α activated JNK1 in a time-dependent manner with maximum effect at 10 min. Desensitization of JNK1 by arachidonic acid significantly reduced its responsiveness to both the cytokines. In addition, 4-bromophenacyl bromide (4-BPB), a potent and selective inhibitor of phospholipase A2 (PLA2), significantly attenuated the cytokine-induced activation of JNK1. Together, these results show that (1) arachidonic acid and its LOX metabolite, 12-HpETE, activate JNK1 in VSMC, (2) PKC-dependent and -independent mechanisms play a role in the activation of JNK1 by arachidonic acid and 12-HpETE, and (3) arachidonic acid mediates, at least partially, the cytokine-induced activation of JNK1.",
author = "Madamanchi, {Nageswara R.} and Bukoski, {Richard D.} and Runge, {Marschall S.} and Rao Gadiparthi",
year = "1998",
month = "1",
day = "22",
doi = "10.1038/sj.onc.1201551",
language = "English (US)",
volume = "16",
pages = "417--422",
journal = "Oncogene",
issn = "0950-9232",
publisher = "Nature Publishing Group",
number = "3",

}

TY - JOUR

T1 - Arachidonic acid activates jun N-terminal kinase in vascular smooth muscle cells

AU - Madamanchi, Nageswara R.

AU - Bukoski, Richard D.

AU - Runge, Marschall S.

AU - Gadiparthi, Rao

PY - 1998/1/22

Y1 - 1998/1/22

N2 - We have previously demonstrated that arachidonic acid activates extracellular signal-regulated protein kinases (ERKs) group of mitogen-activated protein kinases (MAPKs) in vascular smooth muscle cells (VSMC). To understand the role of arachidonic acid in cellular signaling events, we have now studied its effect on jun N-terminal kinases (JNKs) group of MAPKs in VSMC. Arachidonic acid activated JNK1 in a time- and concentration-dependent manner with maximum effects at 10 min and 50 μM. Induced activation of JNK1 by arachidonic acid is specific as other fatty acids such as linoleic and stearic acids had no such effect. Indomethacin and nordihydroguaiaretic acid (NDGA), potent inhibitors of the cyclooxygenase (COX) and the lipoxygenase (LOX)/monooxygenase (MOX) pathways, respectively, had no effect on arachidonic acid activation of JNK1 suggesting that the observed phenomenon is independent of its metabolism through either pathway. However, 12-hydroperoxyeicosatetraenoic acid (12-HpETE), the LOX metabolite of arachidonic acid significantly induced JNK1 activity. Protein kinase C (PKC) depletion by prolonged treatment of VSMC with phorbol 12-myristate 13-acetate (PMA) resulted in partial decrease in the responsiveness of JNK1 to arachidonic acid suggesting a role for both PKC-dependent and -independent mechanisms in the activation of JNK1 by this important fatty acid. On the other hand, the responsiveness of JNK1 to 12-HpETE was completely abolished in PKC-depleted cells, suggesting a major role for PKC in 12-HpETE-induced JNK1 activation. IL-1β and TNF-α activated JNK1 in a time-dependent manner with maximum effect at 10 min. Desensitization of JNK1 by arachidonic acid significantly reduced its responsiveness to both the cytokines. In addition, 4-bromophenacyl bromide (4-BPB), a potent and selective inhibitor of phospholipase A2 (PLA2), significantly attenuated the cytokine-induced activation of JNK1. Together, these results show that (1) arachidonic acid and its LOX metabolite, 12-HpETE, activate JNK1 in VSMC, (2) PKC-dependent and -independent mechanisms play a role in the activation of JNK1 by arachidonic acid and 12-HpETE, and (3) arachidonic acid mediates, at least partially, the cytokine-induced activation of JNK1.

AB - We have previously demonstrated that arachidonic acid activates extracellular signal-regulated protein kinases (ERKs) group of mitogen-activated protein kinases (MAPKs) in vascular smooth muscle cells (VSMC). To understand the role of arachidonic acid in cellular signaling events, we have now studied its effect on jun N-terminal kinases (JNKs) group of MAPKs in VSMC. Arachidonic acid activated JNK1 in a time- and concentration-dependent manner with maximum effects at 10 min and 50 μM. Induced activation of JNK1 by arachidonic acid is specific as other fatty acids such as linoleic and stearic acids had no such effect. Indomethacin and nordihydroguaiaretic acid (NDGA), potent inhibitors of the cyclooxygenase (COX) and the lipoxygenase (LOX)/monooxygenase (MOX) pathways, respectively, had no effect on arachidonic acid activation of JNK1 suggesting that the observed phenomenon is independent of its metabolism through either pathway. However, 12-hydroperoxyeicosatetraenoic acid (12-HpETE), the LOX metabolite of arachidonic acid significantly induced JNK1 activity. Protein kinase C (PKC) depletion by prolonged treatment of VSMC with phorbol 12-myristate 13-acetate (PMA) resulted in partial decrease in the responsiveness of JNK1 to arachidonic acid suggesting a role for both PKC-dependent and -independent mechanisms in the activation of JNK1 by this important fatty acid. On the other hand, the responsiveness of JNK1 to 12-HpETE was completely abolished in PKC-depleted cells, suggesting a major role for PKC in 12-HpETE-induced JNK1 activation. IL-1β and TNF-α activated JNK1 in a time-dependent manner with maximum effect at 10 min. Desensitization of JNK1 by arachidonic acid significantly reduced its responsiveness to both the cytokines. In addition, 4-bromophenacyl bromide (4-BPB), a potent and selective inhibitor of phospholipase A2 (PLA2), significantly attenuated the cytokine-induced activation of JNK1. Together, these results show that (1) arachidonic acid and its LOX metabolite, 12-HpETE, activate JNK1 in VSMC, (2) PKC-dependent and -independent mechanisms play a role in the activation of JNK1 by arachidonic acid and 12-HpETE, and (3) arachidonic acid mediates, at least partially, the cytokine-induced activation of JNK1.

UR - http://www.scopus.com/inward/record.url?scp=0032556924&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032556924&partnerID=8YFLogxK

U2 - 10.1038/sj.onc.1201551

DO - 10.1038/sj.onc.1201551

M3 - Article

VL - 16

SP - 417

EP - 422

JO - Oncogene

JF - Oncogene

SN - 0950-9232

IS - 3

ER -