Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana

Jeonghoon Han, Duck Hyun Kim, Jung Soo Seo, Il Chan Kim, David Nelson, Jayesh Puthumana, Jae Seong Lee

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

CYP20A1 is a member of the cytochrome P450 (CYP) superfamily, identified as an orphan P450 without any assigned biological function; hence, its continued status as an “orphan” gene. In order to address this shortcoming in our understanding of this superfamily, we sought to characterize the CYP20A1 gene in the copepods Tigriopus japonicus (Tj-CYP20A1) and Paracyclopina nana (Pn-CYP20A1) at their mRNA transcriptional level. We assessed the response of this gene's expression in various developmental stages and in response to treatment with bisphenol A (BPA), 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47), and water accommodated fractions (WAFs) of crude oil. As shown in the vertebrate CYP20A1, both Tj-CYP20A1 and Pn-CYP20A1 contained characteristic conserved motifs and domain regions (I helix, K helix and heme-binding motifs) with unusual amino acid sequences apparent in their gene structure. Also molecular characterization of the putative responsive elements in the promoter regions was performed. We observed transcriptional up-regulation of these genes during post-embryonic developmental stages including sex-specific up-regulation in adults. In addition, concentration- and time-dependent mRNA transcripts in response to xenobiotics (BPA, BDE-47, and WAFs) were seen. This study focuses on the molecular elucidation of CYP20A1 genes and their interactions with xenobiotics in the copepods T. japonicus and P. nana that provides important insight into the biological importance of CYP20A1 in invertebrates.

Original languageEnglish (US)
Pages (from-to)42-49
Number of pages8
JournalComparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology
Volume193
DOIs
StatePublished - Mar 1 2017

Fingerprint

Copepoda
Cytochrome P-450 Enzyme System
Genes
Water
Xenobiotics
Up-Regulation
bisphenol A
2,2',4,4'-tetrabromodiphenyl ether
Messenger RNA
Petroleum
Invertebrates
Heme
Genetic Promoter Regions
Gene expression
Ether
Vertebrates
Amino Acid Sequence

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Physiology
  • Toxicology
  • Cell Biology
  • Health, Toxicology and Mutagenesis

Cite this

Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana. / Han, Jeonghoon; Kim, Duck Hyun; Seo, Jung Soo; Kim, Il Chan; Nelson, David; Puthumana, Jayesh; Lee, Jae Seong.

In: Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, Vol. 193, 01.03.2017, p. 42-49.

Research output: Contribution to journalArticle

@article{3894ac5ef0b44031b7e7152655afc647,
title = "Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana",
abstract = "CYP20A1 is a member of the cytochrome P450 (CYP) superfamily, identified as an orphan P450 without any assigned biological function; hence, its continued status as an “orphan” gene. In order to address this shortcoming in our understanding of this superfamily, we sought to characterize the CYP20A1 gene in the copepods Tigriopus japonicus (Tj-CYP20A1) and Paracyclopina nana (Pn-CYP20A1) at their mRNA transcriptional level. We assessed the response of this gene's expression in various developmental stages and in response to treatment with bisphenol A (BPA), 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47), and water accommodated fractions (WAFs) of crude oil. As shown in the vertebrate CYP20A1, both Tj-CYP20A1 and Pn-CYP20A1 contained characteristic conserved motifs and domain regions (I helix, K helix and heme-binding motifs) with unusual amino acid sequences apparent in their gene structure. Also molecular characterization of the putative responsive elements in the promoter regions was performed. We observed transcriptional up-regulation of these genes during post-embryonic developmental stages including sex-specific up-regulation in adults. In addition, concentration- and time-dependent mRNA transcripts in response to xenobiotics (BPA, BDE-47, and WAFs) were seen. This study focuses on the molecular elucidation of CYP20A1 genes and their interactions with xenobiotics in the copepods T. japonicus and P. nana that provides important insight into the biological importance of CYP20A1 in invertebrates.",
author = "Jeonghoon Han and Kim, {Duck Hyun} and Seo, {Jung Soo} and Kim, {Il Chan} and David Nelson and Jayesh Puthumana and Lee, {Jae Seong}",
year = "2017",
month = "3",
day = "1",
doi = "10.1016/j.cbpc.2017.01.001",
language = "English (US)",
volume = "193",
pages = "42--49",
journal = "Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology",
issn = "1532-0456",
publisher = "Elsevier Inc.",

}

TY - JOUR

T1 - Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana

AU - Han, Jeonghoon

AU - Kim, Duck Hyun

AU - Seo, Jung Soo

AU - Kim, Il Chan

AU - Nelson, David

AU - Puthumana, Jayesh

AU - Lee, Jae Seong

PY - 2017/3/1

Y1 - 2017/3/1

N2 - CYP20A1 is a member of the cytochrome P450 (CYP) superfamily, identified as an orphan P450 without any assigned biological function; hence, its continued status as an “orphan” gene. In order to address this shortcoming in our understanding of this superfamily, we sought to characterize the CYP20A1 gene in the copepods Tigriopus japonicus (Tj-CYP20A1) and Paracyclopina nana (Pn-CYP20A1) at their mRNA transcriptional level. We assessed the response of this gene's expression in various developmental stages and in response to treatment with bisphenol A (BPA), 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47), and water accommodated fractions (WAFs) of crude oil. As shown in the vertebrate CYP20A1, both Tj-CYP20A1 and Pn-CYP20A1 contained characteristic conserved motifs and domain regions (I helix, K helix and heme-binding motifs) with unusual amino acid sequences apparent in their gene structure. Also molecular characterization of the putative responsive elements in the promoter regions was performed. We observed transcriptional up-regulation of these genes during post-embryonic developmental stages including sex-specific up-regulation in adults. In addition, concentration- and time-dependent mRNA transcripts in response to xenobiotics (BPA, BDE-47, and WAFs) were seen. This study focuses on the molecular elucidation of CYP20A1 genes and their interactions with xenobiotics in the copepods T. japonicus and P. nana that provides important insight into the biological importance of CYP20A1 in invertebrates.

AB - CYP20A1 is a member of the cytochrome P450 (CYP) superfamily, identified as an orphan P450 without any assigned biological function; hence, its continued status as an “orphan” gene. In order to address this shortcoming in our understanding of this superfamily, we sought to characterize the CYP20A1 gene in the copepods Tigriopus japonicus (Tj-CYP20A1) and Paracyclopina nana (Pn-CYP20A1) at their mRNA transcriptional level. We assessed the response of this gene's expression in various developmental stages and in response to treatment with bisphenol A (BPA), 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47), and water accommodated fractions (WAFs) of crude oil. As shown in the vertebrate CYP20A1, both Tj-CYP20A1 and Pn-CYP20A1 contained characteristic conserved motifs and domain regions (I helix, K helix and heme-binding motifs) with unusual amino acid sequences apparent in their gene structure. Also molecular characterization of the putative responsive elements in the promoter regions was performed. We observed transcriptional up-regulation of these genes during post-embryonic developmental stages including sex-specific up-regulation in adults. In addition, concentration- and time-dependent mRNA transcripts in response to xenobiotics (BPA, BDE-47, and WAFs) were seen. This study focuses on the molecular elucidation of CYP20A1 genes and their interactions with xenobiotics in the copepods T. japonicus and P. nana that provides important insight into the biological importance of CYP20A1 in invertebrates.

UR - http://www.scopus.com/inward/record.url?scp=85010210785&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85010210785&partnerID=8YFLogxK

U2 - 10.1016/j.cbpc.2017.01.001

DO - 10.1016/j.cbpc.2017.01.001

M3 - Article

VL - 193

SP - 42

EP - 49

JO - Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology

JF - Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology

SN - 1532-0456

ER -