Association of mesenchymal cells and immunoglobulins with differentiating epithelial cells

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

Background: Mesenchymal-epithelial interactions play an important role in the physiology and pathology of epithelial tissues. Mesenchymal cells either associate with epithelium basement membrane [pericytes and perivascular monocyte-derived cells (MDC)] or reside within epithelium (MDC and T cells). Although intraepithelial mesenchymal cells were suggested to contribute to the epithelium physiology, their association with particular steps in differentiation of epithelial cells, interactions among themselves, and their fate remain unclear. We studied epitopes of mesenchymal cells and their products (immunoglobulins) in stratified epithelium of uterine ectocervix, which is one of the prototypes of complete cellular differentiation from stem into the aged cells. Results: Perivascular CD14 primitive MDC associated with basal (stem) epithelial cells. Thy-1 pericytes of microvasculature secreted intercellular vesicles, which associated with Ki67 postmitotic epithelial cells expressing MHC class I. Intraepithelial T cells showed an association with veiled type MDC [dendritic cell (DC) precursors] among parabasal cells, and exhibited fragmentation after entering intermediate (mature) epithelial layers. Mature DC secreted CD68 and exhibited fragmentation after reaching mid intermediate layers. Binding of IgM was detected at the top of each layer: in the upper parabasal, upper intermediate, and most surface epithelial cells. IgG was confined to the entire superficial layer. Conclusions: These data suggest that the phylogenetically and ontogenetically developed hierarchy of mesenchymal cells (MDC, pericytes, T cells) and immunoglobulins (IgM, IgG) accompanies differentiation of epithelial cells from immature into the mature and aged phenotype. Further studies of an involvement of mesenchymal cells in the regulation of tissue homeostasis may bring novel approaches to the prevention and therapy of tissue dysfunctions characterized by permanent tissue immaturity (muscular dystrophy) or accelerated aging (degenerative diseases).

Original languageEnglish (US)
Article number1
Pages (from-to)1-13
Number of pages13
JournalBMC Developmental Biology
Volume1
DOIs
StatePublished - Jun 22 2001

Fingerprint

Immunoglobulins
Epithelial Cells
Monocytes
Epithelium
Pericytes
T-Lymphocytes
Dendritic Cells
Immunoglobulin M
Immunoglobulin G
Muscular Dystrophies
Cell- and Tissue-Based Therapy
Microvessels
Basement Membrane
Cell Communication
Epitopes
Homeostasis
Stem Cells
Pathology
Phenotype

All Science Journal Classification (ASJC) codes

  • Developmental Biology

Cite this

@article{7b0fc055bb0a40728b03893bd6eeb42f,
title = "Association of mesenchymal cells and immunoglobulins with differentiating epithelial cells",
abstract = "Background: Mesenchymal-epithelial interactions play an important role in the physiology and pathology of epithelial tissues. Mesenchymal cells either associate with epithelium basement membrane [pericytes and perivascular monocyte-derived cells (MDC)] or reside within epithelium (MDC and T cells). Although intraepithelial mesenchymal cells were suggested to contribute to the epithelium physiology, their association with particular steps in differentiation of epithelial cells, interactions among themselves, and their fate remain unclear. We studied epitopes of mesenchymal cells and their products (immunoglobulins) in stratified epithelium of uterine ectocervix, which is one of the prototypes of complete cellular differentiation from stem into the aged cells. Results: Perivascular CD14 primitive MDC associated with basal (stem) epithelial cells. Thy-1 pericytes of microvasculature secreted intercellular vesicles, which associated with Ki67 postmitotic epithelial cells expressing MHC class I. Intraepithelial T cells showed an association with veiled type MDC [dendritic cell (DC) precursors] among parabasal cells, and exhibited fragmentation after entering intermediate (mature) epithelial layers. Mature DC secreted CD68 and exhibited fragmentation after reaching mid intermediate layers. Binding of IgM was detected at the top of each layer: in the upper parabasal, upper intermediate, and most surface epithelial cells. IgG was confined to the entire superficial layer. Conclusions: These data suggest that the phylogenetically and ontogenetically developed hierarchy of mesenchymal cells (MDC, pericytes, T cells) and immunoglobulins (IgM, IgG) accompanies differentiation of epithelial cells from immature into the mature and aged phenotype. Further studies of an involvement of mesenchymal cells in the regulation of tissue homeostasis may bring novel approaches to the prevention and therapy of tissue dysfunctions characterized by permanent tissue immaturity (muscular dystrophy) or accelerated aging (degenerative diseases).",
author = "Antonin Bukovsky and Michael Caudle and Jeffrey Keenan and Nirmala Upadhyaya and {Van Meter}, Stuart and Jay Wimalasena and Robert Elder",
year = "2001",
month = "6",
day = "22",
doi = "10.1186/1471-213X-1-11",
language = "English (US)",
volume = "1",
pages = "1--13",
journal = "BMC Developmental Biology",
issn = "1471-213X",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Association of mesenchymal cells and immunoglobulins with differentiating epithelial cells

AU - Bukovsky, Antonin

AU - Caudle, Michael

AU - Keenan, Jeffrey

AU - Upadhyaya, Nirmala

AU - Van Meter, Stuart

AU - Wimalasena, Jay

AU - Elder, Robert

PY - 2001/6/22

Y1 - 2001/6/22

N2 - Background: Mesenchymal-epithelial interactions play an important role in the physiology and pathology of epithelial tissues. Mesenchymal cells either associate with epithelium basement membrane [pericytes and perivascular monocyte-derived cells (MDC)] or reside within epithelium (MDC and T cells). Although intraepithelial mesenchymal cells were suggested to contribute to the epithelium physiology, their association with particular steps in differentiation of epithelial cells, interactions among themselves, and their fate remain unclear. We studied epitopes of mesenchymal cells and their products (immunoglobulins) in stratified epithelium of uterine ectocervix, which is one of the prototypes of complete cellular differentiation from stem into the aged cells. Results: Perivascular CD14 primitive MDC associated with basal (stem) epithelial cells. Thy-1 pericytes of microvasculature secreted intercellular vesicles, which associated with Ki67 postmitotic epithelial cells expressing MHC class I. Intraepithelial T cells showed an association with veiled type MDC [dendritic cell (DC) precursors] among parabasal cells, and exhibited fragmentation after entering intermediate (mature) epithelial layers. Mature DC secreted CD68 and exhibited fragmentation after reaching mid intermediate layers. Binding of IgM was detected at the top of each layer: in the upper parabasal, upper intermediate, and most surface epithelial cells. IgG was confined to the entire superficial layer. Conclusions: These data suggest that the phylogenetically and ontogenetically developed hierarchy of mesenchymal cells (MDC, pericytes, T cells) and immunoglobulins (IgM, IgG) accompanies differentiation of epithelial cells from immature into the mature and aged phenotype. Further studies of an involvement of mesenchymal cells in the regulation of tissue homeostasis may bring novel approaches to the prevention and therapy of tissue dysfunctions characterized by permanent tissue immaturity (muscular dystrophy) or accelerated aging (degenerative diseases).

AB - Background: Mesenchymal-epithelial interactions play an important role in the physiology and pathology of epithelial tissues. Mesenchymal cells either associate with epithelium basement membrane [pericytes and perivascular monocyte-derived cells (MDC)] or reside within epithelium (MDC and T cells). Although intraepithelial mesenchymal cells were suggested to contribute to the epithelium physiology, their association with particular steps in differentiation of epithelial cells, interactions among themselves, and their fate remain unclear. We studied epitopes of mesenchymal cells and their products (immunoglobulins) in stratified epithelium of uterine ectocervix, which is one of the prototypes of complete cellular differentiation from stem into the aged cells. Results: Perivascular CD14 primitive MDC associated with basal (stem) epithelial cells. Thy-1 pericytes of microvasculature secreted intercellular vesicles, which associated with Ki67 postmitotic epithelial cells expressing MHC class I. Intraepithelial T cells showed an association with veiled type MDC [dendritic cell (DC) precursors] among parabasal cells, and exhibited fragmentation after entering intermediate (mature) epithelial layers. Mature DC secreted CD68 and exhibited fragmentation after reaching mid intermediate layers. Binding of IgM was detected at the top of each layer: in the upper parabasal, upper intermediate, and most surface epithelial cells. IgG was confined to the entire superficial layer. Conclusions: These data suggest that the phylogenetically and ontogenetically developed hierarchy of mesenchymal cells (MDC, pericytes, T cells) and immunoglobulins (IgM, IgG) accompanies differentiation of epithelial cells from immature into the mature and aged phenotype. Further studies of an involvement of mesenchymal cells in the regulation of tissue homeostasis may bring novel approaches to the prevention and therapy of tissue dysfunctions characterized by permanent tissue immaturity (muscular dystrophy) or accelerated aging (degenerative diseases).

UR - http://www.scopus.com/inward/record.url?scp=3042841910&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3042841910&partnerID=8YFLogxK

U2 - 10.1186/1471-213X-1-11

DO - 10.1186/1471-213X-1-11

M3 - Article

VL - 1

SP - 1

EP - 13

JO - BMC Developmental Biology

JF - BMC Developmental Biology

SN - 1471-213X

M1 - 1

ER -