Avian Homologues of Mammalian Intralaminar, Mediodorsal and Midline Thalamic Nuclei

Immunohistochemical and Hodological Evidence

C. Leo Veenman, Loreta Medina, Anton Reiner

Research output: Contribution to journalArticle

78 Citations (Scopus)

Abstract

This paper presents and reviews data suggesting that the dorsal thalamic zone (abbreviated DTZ) in birds is homologous to the intralaminar, midline, and mediodorsal thalamic nuclear complex (abbreviated IMMC) in mammals. The DTZ is located dorsomedially in the diencephalon of birds and consists of several subnuclei: nucleus dorsomedialis anterior thalami (DMA), nucleus dorsomedialis posterior thalami (DMP), nucleus dorsolateralis anterior thalami, pars medialis (DLM), nucleus dorsointermedius posterior thalami (DIP), nucleus dorsolateralis posterior thalami (DLP), and nucleus subhabenularis lateralis (SHL). Our immunohistochemical studies show that: (1) SHL and medial and dorsal parts of DMA and DMP are relatively rich in GABAergic, enkephalin-containing, substance P-containing, and cholinergic fibers; (2) lateral parts of DMA and DMP are relatively poor in these neurotransmitters; and (3) DIP, DLP, and DLM are moderately rich in cholinergic and substance P-containing fibers. Our retrograde pathway tracing studies indicate that the DIP and DLP in the more lateral parts of DTZ project to somatic striatum, while the DMA, DMP, and SHL located more medially in the DTZ project to visceral/limbic striatum. Our anterograde tracing studies indicate that DIP receives afferents from the dorsal pallidum, whereas DMA and DMP appear to receive afferents from both the ventral striatum and ventral pallidum. Diverse prior studies have shown that in general medial and lateral components of DTZ are connected with visceral/ limbic and somatic brain regions, respectively. These characteristics indicate that: (1) SHL and medial and dorsal parts of DMA and DMP are comparable to mammalian midline thalamic nuclei, including the medial components of the intralaminar nuclei; (2) lateral parts of DMA and DMP are comparable to the mediodorsal nucleus in mammals; (3) DIP is comparable to the parafascicular nucleus in mammals; and (4) DLM and DLP are comparable to the laterally located intralaminar nuclei in mammals. The comparability of avian DTZ and mammalian IMMC suggests that they evolved from thalamic precursor nuclei present in the common reptilian ancestors and that they may perform similar roles in the movement control function of the basal ganglia.

Original languageEnglish (US)
Pages (from-to)78-98
Number of pages21
JournalBrain, Behavior and Evolution
Volume49
Issue number2
DOIs
StatePublished - Jan 1 1997

Fingerprint

Midline Thalamic Nuclei
Intralaminar Thalamic Nuclei
Mediodorsal Thalamic Nucleus
Thalamus
Anterior Thalamic Nuclei
Mammals
Posterior Thalamic Nuclei
Substance P
Birds
Cholinergic Fibers
Thalamic Nuclei
Diencephalon
Globus Pallidus
Enkephalins
Basal Ganglia

All Science Journal Classification (ASJC) codes

  • Developmental Neuroscience
  • Behavioral Neuroscience

Cite this

Avian Homologues of Mammalian Intralaminar, Mediodorsal and Midline Thalamic Nuclei : Immunohistochemical and Hodological Evidence. / Veenman, C. Leo; Medina, Loreta; Reiner, Anton.

In: Brain, Behavior and Evolution, Vol. 49, No. 2, 01.01.1997, p. 78-98.

Research output: Contribution to journalArticle

@article{80e8f0451ab84bcab08473ece7537a5c,
title = "Avian Homologues of Mammalian Intralaminar, Mediodorsal and Midline Thalamic Nuclei: Immunohistochemical and Hodological Evidence",
abstract = "This paper presents and reviews data suggesting that the dorsal thalamic zone (abbreviated DTZ) in birds is homologous to the intralaminar, midline, and mediodorsal thalamic nuclear complex (abbreviated IMMC) in mammals. The DTZ is located dorsomedially in the diencephalon of birds and consists of several subnuclei: nucleus dorsomedialis anterior thalami (DMA), nucleus dorsomedialis posterior thalami (DMP), nucleus dorsolateralis anterior thalami, pars medialis (DLM), nucleus dorsointermedius posterior thalami (DIP), nucleus dorsolateralis posterior thalami (DLP), and nucleus subhabenularis lateralis (SHL). Our immunohistochemical studies show that: (1) SHL and medial and dorsal parts of DMA and DMP are relatively rich in GABAergic, enkephalin-containing, substance P-containing, and cholinergic fibers; (2) lateral parts of DMA and DMP are relatively poor in these neurotransmitters; and (3) DIP, DLP, and DLM are moderately rich in cholinergic and substance P-containing fibers. Our retrograde pathway tracing studies indicate that the DIP and DLP in the more lateral parts of DTZ project to somatic striatum, while the DMA, DMP, and SHL located more medially in the DTZ project to visceral/limbic striatum. Our anterograde tracing studies indicate that DIP receives afferents from the dorsal pallidum, whereas DMA and DMP appear to receive afferents from both the ventral striatum and ventral pallidum. Diverse prior studies have shown that in general medial and lateral components of DTZ are connected with visceral/ limbic and somatic brain regions, respectively. These characteristics indicate that: (1) SHL and medial and dorsal parts of DMA and DMP are comparable to mammalian midline thalamic nuclei, including the medial components of the intralaminar nuclei; (2) lateral parts of DMA and DMP are comparable to the mediodorsal nucleus in mammals; (3) DIP is comparable to the parafascicular nucleus in mammals; and (4) DLM and DLP are comparable to the laterally located intralaminar nuclei in mammals. The comparability of avian DTZ and mammalian IMMC suggests that they evolved from thalamic precursor nuclei present in the common reptilian ancestors and that they may perform similar roles in the movement control function of the basal ganglia.",
author = "Veenman, {C. Leo} and Loreta Medina and Anton Reiner",
year = "1997",
month = "1",
day = "1",
doi = "10.1159/000112983",
language = "English (US)",
volume = "49",
pages = "78--98",
journal = "Brain, Behavior and Evolution",
issn = "0006-8977",
publisher = "S. Karger AG",
number = "2",

}

TY - JOUR

T1 - Avian Homologues of Mammalian Intralaminar, Mediodorsal and Midline Thalamic Nuclei

T2 - Immunohistochemical and Hodological Evidence

AU - Veenman, C. Leo

AU - Medina, Loreta

AU - Reiner, Anton

PY - 1997/1/1

Y1 - 1997/1/1

N2 - This paper presents and reviews data suggesting that the dorsal thalamic zone (abbreviated DTZ) in birds is homologous to the intralaminar, midline, and mediodorsal thalamic nuclear complex (abbreviated IMMC) in mammals. The DTZ is located dorsomedially in the diencephalon of birds and consists of several subnuclei: nucleus dorsomedialis anterior thalami (DMA), nucleus dorsomedialis posterior thalami (DMP), nucleus dorsolateralis anterior thalami, pars medialis (DLM), nucleus dorsointermedius posterior thalami (DIP), nucleus dorsolateralis posterior thalami (DLP), and nucleus subhabenularis lateralis (SHL). Our immunohistochemical studies show that: (1) SHL and medial and dorsal parts of DMA and DMP are relatively rich in GABAergic, enkephalin-containing, substance P-containing, and cholinergic fibers; (2) lateral parts of DMA and DMP are relatively poor in these neurotransmitters; and (3) DIP, DLP, and DLM are moderately rich in cholinergic and substance P-containing fibers. Our retrograde pathway tracing studies indicate that the DIP and DLP in the more lateral parts of DTZ project to somatic striatum, while the DMA, DMP, and SHL located more medially in the DTZ project to visceral/limbic striatum. Our anterograde tracing studies indicate that DIP receives afferents from the dorsal pallidum, whereas DMA and DMP appear to receive afferents from both the ventral striatum and ventral pallidum. Diverse prior studies have shown that in general medial and lateral components of DTZ are connected with visceral/ limbic and somatic brain regions, respectively. These characteristics indicate that: (1) SHL and medial and dorsal parts of DMA and DMP are comparable to mammalian midline thalamic nuclei, including the medial components of the intralaminar nuclei; (2) lateral parts of DMA and DMP are comparable to the mediodorsal nucleus in mammals; (3) DIP is comparable to the parafascicular nucleus in mammals; and (4) DLM and DLP are comparable to the laterally located intralaminar nuclei in mammals. The comparability of avian DTZ and mammalian IMMC suggests that they evolved from thalamic precursor nuclei present in the common reptilian ancestors and that they may perform similar roles in the movement control function of the basal ganglia.

AB - This paper presents and reviews data suggesting that the dorsal thalamic zone (abbreviated DTZ) in birds is homologous to the intralaminar, midline, and mediodorsal thalamic nuclear complex (abbreviated IMMC) in mammals. The DTZ is located dorsomedially in the diencephalon of birds and consists of several subnuclei: nucleus dorsomedialis anterior thalami (DMA), nucleus dorsomedialis posterior thalami (DMP), nucleus dorsolateralis anterior thalami, pars medialis (DLM), nucleus dorsointermedius posterior thalami (DIP), nucleus dorsolateralis posterior thalami (DLP), and nucleus subhabenularis lateralis (SHL). Our immunohistochemical studies show that: (1) SHL and medial and dorsal parts of DMA and DMP are relatively rich in GABAergic, enkephalin-containing, substance P-containing, and cholinergic fibers; (2) lateral parts of DMA and DMP are relatively poor in these neurotransmitters; and (3) DIP, DLP, and DLM are moderately rich in cholinergic and substance P-containing fibers. Our retrograde pathway tracing studies indicate that the DIP and DLP in the more lateral parts of DTZ project to somatic striatum, while the DMA, DMP, and SHL located more medially in the DTZ project to visceral/limbic striatum. Our anterograde tracing studies indicate that DIP receives afferents from the dorsal pallidum, whereas DMA and DMP appear to receive afferents from both the ventral striatum and ventral pallidum. Diverse prior studies have shown that in general medial and lateral components of DTZ are connected with visceral/ limbic and somatic brain regions, respectively. These characteristics indicate that: (1) SHL and medial and dorsal parts of DMA and DMP are comparable to mammalian midline thalamic nuclei, including the medial components of the intralaminar nuclei; (2) lateral parts of DMA and DMP are comparable to the mediodorsal nucleus in mammals; (3) DIP is comparable to the parafascicular nucleus in mammals; and (4) DLM and DLP are comparable to the laterally located intralaminar nuclei in mammals. The comparability of avian DTZ and mammalian IMMC suggests that they evolved from thalamic precursor nuclei present in the common reptilian ancestors and that they may perform similar roles in the movement control function of the basal ganglia.

UR - http://www.scopus.com/inward/record.url?scp=0030638851&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030638851&partnerID=8YFLogxK

U2 - 10.1159/000112983

DO - 10.1159/000112983

M3 - Article

VL - 49

SP - 78

EP - 98

JO - Brain, Behavior and Evolution

JF - Brain, Behavior and Evolution

SN - 0006-8977

IS - 2

ER -