Barrier function of airway epithelium

Effects of radiation and protection by keratinocyte growth factor

Ushma Savla, Christopher Waters

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

In patients undergoing radiation therapy in the thoracic region, ionizing radiation causes immediate damage to pulmonary endothelial and epithelial cells. We have recently shown that keratinocyte growth factor (KGF) protects against increases in permeability induced by hydrogen peroxide in human airway epithelial cells. Since radiation injury involves the production of oxygen free radicals, we tested the hypothesis that KGF would protect against radiation-induced increases in permeability. Two lines of human airway epithelial cells (Calu-3 and 16HBE14o-) were grown on collagen- coated polyester membranes (Transwell, Costar) and the permeability of the monolayers was determined by measuring the flux of tracers from the top chamber to the bottom chamber as a function of time. Changes in permeability were apparent 4 h after exposure. Increasing doses of radiation (2-10 Gy) stimulated significant increases in permeability compared with control monolayers (P < 0.05, n = 5-10) in Calu-3 and 16HBE14o- cells. KGF (50 ng/ml) alone reduced permeability significantly compared with controls, protected against increases in permeability with low doses of radiation and provided partial protection at higher doses. KGF also provided a significant effect in cells irradiated with 10 Gy (n = 5, P < 0. 05) when given for the 4 h immediately after irradiation. The effects of KGF were sustained. After a full 24-h pretreatment with KGF, cells were incubated in medium without KGF for 8 or 12 h prior to 10 Gy irradiation. Both of these treatments significantly reduced permeability to albumin in sham-irradiated and irradiated cells (n = 3, P < 0.05). To investigate the signal transduction pathways through which KGF mediates protection, permeability was measured in the presence of the protein kinase C (PKC) inhibitor, calphostin C, or the tyrosine kinase inhibitor, genistein. Inhibition of PKC blocked the decrease in basal tracer flux caused by KGF treatment in both cell types and removed the KGF-mediated protection against radiation. Incubation with genistein completely blocked the KGF-mediated decrease in the baseline tracer flux, as well as the ameliorating effect observed after irradiation. Rhodamine- phalloidin staining of the F-actin cytoskeleton showed disruption of the cytoskeleton with radioation exposure, increased density of F-actin filaments with KGF treatment, and resistance to disruption when cells were pretreated with KGF and exposed to radiation. Our results suggest that KGF regulates permeability in airway epithelium through a pathway mediated by PKC and tyrosine kinase that stabilizes the F-actin cytoskeleton.

Original languageEnglish (US)
Pages (from-to)195-203
Number of pages9
JournalRadiation Research
Volume150
Issue number2
DOIs
StatePublished - Aug 1 1998

Fingerprint

Fibroblast Growth Factor 7
Radiation Protection
epithelium
keratinocytes
growth factors
Epithelium
Permeability
permeability
radiation
protein kinase C
microfilaments
Actin Cytoskeleton
Radiation
actin
tracers
Actins
tracer techniques
epithelial cells
Genistein
irradiation

All Science Journal Classification (ASJC) codes

  • Agricultural and Biological Sciences (miscellaneous)
  • Radiology Nuclear Medicine and imaging
  • Biophysics
  • Radiation

Cite this

Barrier function of airway epithelium : Effects of radiation and protection by keratinocyte growth factor. / Savla, Ushma; Waters, Christopher.

In: Radiation Research, Vol. 150, No. 2, 01.08.1998, p. 195-203.

Research output: Contribution to journalArticle

Savla, Ushma ; Waters, Christopher. / Barrier function of airway epithelium : Effects of radiation and protection by keratinocyte growth factor. In: Radiation Research. 1998 ; Vol. 150, No. 2. pp. 195-203.
@article{33bef7570989478fa7cb70f411e3b498,
title = "Barrier function of airway epithelium: Effects of radiation and protection by keratinocyte growth factor",
abstract = "In patients undergoing radiation therapy in the thoracic region, ionizing radiation causes immediate damage to pulmonary endothelial and epithelial cells. We have recently shown that keratinocyte growth factor (KGF) protects against increases in permeability induced by hydrogen peroxide in human airway epithelial cells. Since radiation injury involves the production of oxygen free radicals, we tested the hypothesis that KGF would protect against radiation-induced increases in permeability. Two lines of human airway epithelial cells (Calu-3 and 16HBE14o-) were grown on collagen- coated polyester membranes (Transwell, Costar) and the permeability of the monolayers was determined by measuring the flux of tracers from the top chamber to the bottom chamber as a function of time. Changes in permeability were apparent 4 h after exposure. Increasing doses of radiation (2-10 Gy) stimulated significant increases in permeability compared with control monolayers (P < 0.05, n = 5-10) in Calu-3 and 16HBE14o- cells. KGF (50 ng/ml) alone reduced permeability significantly compared with controls, protected against increases in permeability with low doses of radiation and provided partial protection at higher doses. KGF also provided a significant effect in cells irradiated with 10 Gy (n = 5, P < 0. 05) when given for the 4 h immediately after irradiation. The effects of KGF were sustained. After a full 24-h pretreatment with KGF, cells were incubated in medium without KGF for 8 or 12 h prior to 10 Gy irradiation. Both of these treatments significantly reduced permeability to albumin in sham-irradiated and irradiated cells (n = 3, P < 0.05). To investigate the signal transduction pathways through which KGF mediates protection, permeability was measured in the presence of the protein kinase C (PKC) inhibitor, calphostin C, or the tyrosine kinase inhibitor, genistein. Inhibition of PKC blocked the decrease in basal tracer flux caused by KGF treatment in both cell types and removed the KGF-mediated protection against radiation. Incubation with genistein completely blocked the KGF-mediated decrease in the baseline tracer flux, as well as the ameliorating effect observed after irradiation. Rhodamine- phalloidin staining of the F-actin cytoskeleton showed disruption of the cytoskeleton with radioation exposure, increased density of F-actin filaments with KGF treatment, and resistance to disruption when cells were pretreated with KGF and exposed to radiation. Our results suggest that KGF regulates permeability in airway epithelium through a pathway mediated by PKC and tyrosine kinase that stabilizes the F-actin cytoskeleton.",
author = "Ushma Savla and Christopher Waters",
year = "1998",
month = "8",
day = "1",
doi = "10.2307/3579855",
language = "English (US)",
volume = "150",
pages = "195--203",
journal = "Radiation Research",
issn = "0033-7587",
publisher = "Radiation Research Society",
number = "2",

}

TY - JOUR

T1 - Barrier function of airway epithelium

T2 - Effects of radiation and protection by keratinocyte growth factor

AU - Savla, Ushma

AU - Waters, Christopher

PY - 1998/8/1

Y1 - 1998/8/1

N2 - In patients undergoing radiation therapy in the thoracic region, ionizing radiation causes immediate damage to pulmonary endothelial and epithelial cells. We have recently shown that keratinocyte growth factor (KGF) protects against increases in permeability induced by hydrogen peroxide in human airway epithelial cells. Since radiation injury involves the production of oxygen free radicals, we tested the hypothesis that KGF would protect against radiation-induced increases in permeability. Two lines of human airway epithelial cells (Calu-3 and 16HBE14o-) were grown on collagen- coated polyester membranes (Transwell, Costar) and the permeability of the monolayers was determined by measuring the flux of tracers from the top chamber to the bottom chamber as a function of time. Changes in permeability were apparent 4 h after exposure. Increasing doses of radiation (2-10 Gy) stimulated significant increases in permeability compared with control monolayers (P < 0.05, n = 5-10) in Calu-3 and 16HBE14o- cells. KGF (50 ng/ml) alone reduced permeability significantly compared with controls, protected against increases in permeability with low doses of radiation and provided partial protection at higher doses. KGF also provided a significant effect in cells irradiated with 10 Gy (n = 5, P < 0. 05) when given for the 4 h immediately after irradiation. The effects of KGF were sustained. After a full 24-h pretreatment with KGF, cells were incubated in medium without KGF for 8 or 12 h prior to 10 Gy irradiation. Both of these treatments significantly reduced permeability to albumin in sham-irradiated and irradiated cells (n = 3, P < 0.05). To investigate the signal transduction pathways through which KGF mediates protection, permeability was measured in the presence of the protein kinase C (PKC) inhibitor, calphostin C, or the tyrosine kinase inhibitor, genistein. Inhibition of PKC blocked the decrease in basal tracer flux caused by KGF treatment in both cell types and removed the KGF-mediated protection against radiation. Incubation with genistein completely blocked the KGF-mediated decrease in the baseline tracer flux, as well as the ameliorating effect observed after irradiation. Rhodamine- phalloidin staining of the F-actin cytoskeleton showed disruption of the cytoskeleton with radioation exposure, increased density of F-actin filaments with KGF treatment, and resistance to disruption when cells were pretreated with KGF and exposed to radiation. Our results suggest that KGF regulates permeability in airway epithelium through a pathway mediated by PKC and tyrosine kinase that stabilizes the F-actin cytoskeleton.

AB - In patients undergoing radiation therapy in the thoracic region, ionizing radiation causes immediate damage to pulmonary endothelial and epithelial cells. We have recently shown that keratinocyte growth factor (KGF) protects against increases in permeability induced by hydrogen peroxide in human airway epithelial cells. Since radiation injury involves the production of oxygen free radicals, we tested the hypothesis that KGF would protect against radiation-induced increases in permeability. Two lines of human airway epithelial cells (Calu-3 and 16HBE14o-) were grown on collagen- coated polyester membranes (Transwell, Costar) and the permeability of the monolayers was determined by measuring the flux of tracers from the top chamber to the bottom chamber as a function of time. Changes in permeability were apparent 4 h after exposure. Increasing doses of radiation (2-10 Gy) stimulated significant increases in permeability compared with control monolayers (P < 0.05, n = 5-10) in Calu-3 and 16HBE14o- cells. KGF (50 ng/ml) alone reduced permeability significantly compared with controls, protected against increases in permeability with low doses of radiation and provided partial protection at higher doses. KGF also provided a significant effect in cells irradiated with 10 Gy (n = 5, P < 0. 05) when given for the 4 h immediately after irradiation. The effects of KGF were sustained. After a full 24-h pretreatment with KGF, cells were incubated in medium without KGF for 8 or 12 h prior to 10 Gy irradiation. Both of these treatments significantly reduced permeability to albumin in sham-irradiated and irradiated cells (n = 3, P < 0.05). To investigate the signal transduction pathways through which KGF mediates protection, permeability was measured in the presence of the protein kinase C (PKC) inhibitor, calphostin C, or the tyrosine kinase inhibitor, genistein. Inhibition of PKC blocked the decrease in basal tracer flux caused by KGF treatment in both cell types and removed the KGF-mediated protection against radiation. Incubation with genistein completely blocked the KGF-mediated decrease in the baseline tracer flux, as well as the ameliorating effect observed after irradiation. Rhodamine- phalloidin staining of the F-actin cytoskeleton showed disruption of the cytoskeleton with radioation exposure, increased density of F-actin filaments with KGF treatment, and resistance to disruption when cells were pretreated with KGF and exposed to radiation. Our results suggest that KGF regulates permeability in airway epithelium through a pathway mediated by PKC and tyrosine kinase that stabilizes the F-actin cytoskeleton.

UR - http://www.scopus.com/inward/record.url?scp=0031848924&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031848924&partnerID=8YFLogxK

U2 - 10.2307/3579855

DO - 10.2307/3579855

M3 - Article

VL - 150

SP - 195

EP - 203

JO - Radiation Research

JF - Radiation Research

SN - 0033-7587

IS - 2

ER -