Calcineurin activation is not necessary for doxorubicin-induced hypertrophy in H9c2 embryonic rat cardiac cells

Involvement of the phosphoinositide 3-kinase-akt pathway

Kevyn E. Merten, Youchun Jiang, Wenke Feng, Yujian Kang

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

The calcium/calmodulin-dependent phosphatase calcineurin has been shown to be both necessary and sufficient to induce cardiac hypertrophy in vivo and in vitro. Treatment with the antineoplastic agent doxorubicin (DOX) was shown to activate calcineurin signaling in H9c2 rat cardiac muscle cells; however, the effect of this activation on hypertrophy was not investigated. Therefore, the present study was undertaken to examine the involvement of calcineurin activation in DOX-induced cardiac cell hypertrophy. H9c2 cells were treated with 1 μM DOX for 2 h following pretreatment with and in the presence of calcineurin inhibitors cyclosporine A (CsA) or FK506 (tacrolimus). Subsequent analysis of calcineurin signaling and cellular hypertrophy was performed 8 to 48 h after the treatment. DOX treatment activated calcineurin signaling and resulted in cellular hypertrophy as assessed by an increase in cell volume and protein content per cell. Inhibition of calcineurin with CsA or FK506 blocked DOX-induced calcineurin signaling. However, this inhibition did not prevent the DOX-induced hypertrophic response in H9c2 cells. Further evaluation of the possible signaling pathways involved in DOX-induced H9c2 cellular hypertrophy revealed that DOX treatment resulted in phosphorylation of the serine/threonine protein kinase Akt, a downstream effector of phosphoinositide 3-kinase (PI3K). Moreover, the DOX-induced hypertrophic response was blunted by LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], a specific inhibitor for PI3K. These results demonstrate that, although calcineurin is activated by DOX treatment, it is not necessary for DOX-induced hypertrophy in H9c2 cells. Rather, the PI3K-Akt signaling pathway seems to be more critically involved in DOX-induced hypertrophy.

Original languageEnglish (US)
Pages (from-to)934-940
Number of pages7
JournalJournal of Pharmacology and Experimental Therapeutics
Volume319
Issue number2
DOIs
StatePublished - Nov 24 2006

Fingerprint

1-Phosphatidylinositol 4-Kinase
Calcineurin
Doxorubicin
Hypertrophy
Tacrolimus
2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
Cardiomegaly
Cyclosporine
Protein-Serine-Threonine Kinases
Calmodulin
Cell Size
Cardiac Myocytes
Antineoplastic Agents
Phosphorylation

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Pharmacology

Cite this

@article{837b6bba133f40e09837103b52c184d2,
title = "Calcineurin activation is not necessary for doxorubicin-induced hypertrophy in H9c2 embryonic rat cardiac cells: Involvement of the phosphoinositide 3-kinase-akt pathway",
abstract = "The calcium/calmodulin-dependent phosphatase calcineurin has been shown to be both necessary and sufficient to induce cardiac hypertrophy in vivo and in vitro. Treatment with the antineoplastic agent doxorubicin (DOX) was shown to activate calcineurin signaling in H9c2 rat cardiac muscle cells; however, the effect of this activation on hypertrophy was not investigated. Therefore, the present study was undertaken to examine the involvement of calcineurin activation in DOX-induced cardiac cell hypertrophy. H9c2 cells were treated with 1 μM DOX for 2 h following pretreatment with and in the presence of calcineurin inhibitors cyclosporine A (CsA) or FK506 (tacrolimus). Subsequent analysis of calcineurin signaling and cellular hypertrophy was performed 8 to 48 h after the treatment. DOX treatment activated calcineurin signaling and resulted in cellular hypertrophy as assessed by an increase in cell volume and protein content per cell. Inhibition of calcineurin with CsA or FK506 blocked DOX-induced calcineurin signaling. However, this inhibition did not prevent the DOX-induced hypertrophic response in H9c2 cells. Further evaluation of the possible signaling pathways involved in DOX-induced H9c2 cellular hypertrophy revealed that DOX treatment resulted in phosphorylation of the serine/threonine protein kinase Akt, a downstream effector of phosphoinositide 3-kinase (PI3K). Moreover, the DOX-induced hypertrophic response was blunted by LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], a specific inhibitor for PI3K. These results demonstrate that, although calcineurin is activated by DOX treatment, it is not necessary for DOX-induced hypertrophy in H9c2 cells. Rather, the PI3K-Akt signaling pathway seems to be more critically involved in DOX-induced hypertrophy.",
author = "Merten, {Kevyn E.} and Youchun Jiang and Wenke Feng and Yujian Kang",
year = "2006",
month = "11",
day = "24",
doi = "10.1124/jpet.106.108845",
language = "English (US)",
volume = "319",
pages = "934--940",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "2",

}

TY - JOUR

T1 - Calcineurin activation is not necessary for doxorubicin-induced hypertrophy in H9c2 embryonic rat cardiac cells

T2 - Involvement of the phosphoinositide 3-kinase-akt pathway

AU - Merten, Kevyn E.

AU - Jiang, Youchun

AU - Feng, Wenke

AU - Kang, Yujian

PY - 2006/11/24

Y1 - 2006/11/24

N2 - The calcium/calmodulin-dependent phosphatase calcineurin has been shown to be both necessary and sufficient to induce cardiac hypertrophy in vivo and in vitro. Treatment with the antineoplastic agent doxorubicin (DOX) was shown to activate calcineurin signaling in H9c2 rat cardiac muscle cells; however, the effect of this activation on hypertrophy was not investigated. Therefore, the present study was undertaken to examine the involvement of calcineurin activation in DOX-induced cardiac cell hypertrophy. H9c2 cells were treated with 1 μM DOX for 2 h following pretreatment with and in the presence of calcineurin inhibitors cyclosporine A (CsA) or FK506 (tacrolimus). Subsequent analysis of calcineurin signaling and cellular hypertrophy was performed 8 to 48 h after the treatment. DOX treatment activated calcineurin signaling and resulted in cellular hypertrophy as assessed by an increase in cell volume and protein content per cell. Inhibition of calcineurin with CsA or FK506 blocked DOX-induced calcineurin signaling. However, this inhibition did not prevent the DOX-induced hypertrophic response in H9c2 cells. Further evaluation of the possible signaling pathways involved in DOX-induced H9c2 cellular hypertrophy revealed that DOX treatment resulted in phosphorylation of the serine/threonine protein kinase Akt, a downstream effector of phosphoinositide 3-kinase (PI3K). Moreover, the DOX-induced hypertrophic response was blunted by LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], a specific inhibitor for PI3K. These results demonstrate that, although calcineurin is activated by DOX treatment, it is not necessary for DOX-induced hypertrophy in H9c2 cells. Rather, the PI3K-Akt signaling pathway seems to be more critically involved in DOX-induced hypertrophy.

AB - The calcium/calmodulin-dependent phosphatase calcineurin has been shown to be both necessary and sufficient to induce cardiac hypertrophy in vivo and in vitro. Treatment with the antineoplastic agent doxorubicin (DOX) was shown to activate calcineurin signaling in H9c2 rat cardiac muscle cells; however, the effect of this activation on hypertrophy was not investigated. Therefore, the present study was undertaken to examine the involvement of calcineurin activation in DOX-induced cardiac cell hypertrophy. H9c2 cells were treated with 1 μM DOX for 2 h following pretreatment with and in the presence of calcineurin inhibitors cyclosporine A (CsA) or FK506 (tacrolimus). Subsequent analysis of calcineurin signaling and cellular hypertrophy was performed 8 to 48 h after the treatment. DOX treatment activated calcineurin signaling and resulted in cellular hypertrophy as assessed by an increase in cell volume and protein content per cell. Inhibition of calcineurin with CsA or FK506 blocked DOX-induced calcineurin signaling. However, this inhibition did not prevent the DOX-induced hypertrophic response in H9c2 cells. Further evaluation of the possible signaling pathways involved in DOX-induced H9c2 cellular hypertrophy revealed that DOX treatment resulted in phosphorylation of the serine/threonine protein kinase Akt, a downstream effector of phosphoinositide 3-kinase (PI3K). Moreover, the DOX-induced hypertrophic response was blunted by LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], a specific inhibitor for PI3K. These results demonstrate that, although calcineurin is activated by DOX treatment, it is not necessary for DOX-induced hypertrophy in H9c2 cells. Rather, the PI3K-Akt signaling pathway seems to be more critically involved in DOX-induced hypertrophy.

UR - http://www.scopus.com/inward/record.url?scp=33751170254&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33751170254&partnerID=8YFLogxK

U2 - 10.1124/jpet.106.108845

DO - 10.1124/jpet.106.108845

M3 - Article

VL - 319

SP - 934

EP - 940

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 2

ER -