Calcium-dependent fast depolarizing afterpotentials in vasopressin neurons in the rat supraoptic nucleus

Ryoichi Teruyama, William Armstrong

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Oxytocin (OT) and vasopressin (VP) synthesizing magnocellular cells (MNCs) in the supraoptic nucleus (SON) display distinct firing patterns during the physiological demands for these hormones. Depolarizing afterpotentials (DAPs) in these neurons are involved in controlling phasic bursting in VP neurons. Our whole cell recordings demonstrated a Cs+-resistant fast DAP (fDAP; decay tau = ∼200 ms), which has not been previously reported, in addition to the well-known Cs+-sensitive slower DAP (sDAP; decay tau = ∼2 s). Immunoidentification of recorded neurons revealed that all VP neurons, but only 20% of OT neurons, expressed the fDAP. The activation of the fDAP required influx of Ca2+ through voltage-gated Ca2+ channels as it was strongly suppressed in Ca2+-free extracellular solution or by bath application of Cd2+. Additionally, the current underlying the fDAP (IfDAP) is a Ca2+-activated current rather than a Ca2+ current per se as it was abolished by strongly buffering intracellular Ca2+ with BAPTA. The I-V relationship of the I fDAP was linear at potentials less than -60 mV but showed pronounced outward rectification near -50 mV. IfDAP is sensitive to changes in extracellular Na+ and K+ but not Cl-. A blocker of Ca2+-activated nonselective cation (CAN) currents, flufenamic acid, blocked the fDAP, suggesting the involvement of a CAN current in the generation of fDAP in VP neurons. We speculate that the two DAPs have different roles in generating after burst discharges and could play important roles in determining the distinct firing properties of VP neurons in the SON neurons.

Original languageEnglish (US)
Pages (from-to)2612-2621
Number of pages10
JournalJournal of Neurophysiology
Volume98
Issue number5
DOIs
StatePublished - Nov 1 2007
Externally publishedYes

Fingerprint

Supraoptic Nucleus
Vasopressins
Calcium
Neurons
Oxytocin
Cations
Flufenamic Acid
Patch-Clamp Techniques
Baths
Hormones

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Physiology

Cite this

Calcium-dependent fast depolarizing afterpotentials in vasopressin neurons in the rat supraoptic nucleus. / Teruyama, Ryoichi; Armstrong, William.

In: Journal of Neurophysiology, Vol. 98, No. 5, 01.11.2007, p. 2612-2621.

Research output: Contribution to journalArticle

@article{260b15ebe41f4fed8a700f2cf84913fd,
title = "Calcium-dependent fast depolarizing afterpotentials in vasopressin neurons in the rat supraoptic nucleus",
abstract = "Oxytocin (OT) and vasopressin (VP) synthesizing magnocellular cells (MNCs) in the supraoptic nucleus (SON) display distinct firing patterns during the physiological demands for these hormones. Depolarizing afterpotentials (DAPs) in these neurons are involved in controlling phasic bursting in VP neurons. Our whole cell recordings demonstrated a Cs+-resistant fast DAP (fDAP; decay tau = ∼200 ms), which has not been previously reported, in addition to the well-known Cs+-sensitive slower DAP (sDAP; decay tau = ∼2 s). Immunoidentification of recorded neurons revealed that all VP neurons, but only 20{\%} of OT neurons, expressed the fDAP. The activation of the fDAP required influx of Ca2+ through voltage-gated Ca2+ channels as it was strongly suppressed in Ca2+-free extracellular solution or by bath application of Cd2+. Additionally, the current underlying the fDAP (IfDAP) is a Ca2+-activated current rather than a Ca2+ current per se as it was abolished by strongly buffering intracellular Ca2+ with BAPTA. The I-V relationship of the I fDAP was linear at potentials less than -60 mV but showed pronounced outward rectification near -50 mV. IfDAP is sensitive to changes in extracellular Na+ and K+ but not Cl-. A blocker of Ca2+-activated nonselective cation (CAN) currents, flufenamic acid, blocked the fDAP, suggesting the involvement of a CAN current in the generation of fDAP in VP neurons. We speculate that the two DAPs have different roles in generating after burst discharges and could play important roles in determining the distinct firing properties of VP neurons in the SON neurons.",
author = "Ryoichi Teruyama and William Armstrong",
year = "2007",
month = "11",
day = "1",
doi = "10.1152/jn.00599.2007",
language = "English (US)",
volume = "98",
pages = "2612--2621",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - Calcium-dependent fast depolarizing afterpotentials in vasopressin neurons in the rat supraoptic nucleus

AU - Teruyama, Ryoichi

AU - Armstrong, William

PY - 2007/11/1

Y1 - 2007/11/1

N2 - Oxytocin (OT) and vasopressin (VP) synthesizing magnocellular cells (MNCs) in the supraoptic nucleus (SON) display distinct firing patterns during the physiological demands for these hormones. Depolarizing afterpotentials (DAPs) in these neurons are involved in controlling phasic bursting in VP neurons. Our whole cell recordings demonstrated a Cs+-resistant fast DAP (fDAP; decay tau = ∼200 ms), which has not been previously reported, in addition to the well-known Cs+-sensitive slower DAP (sDAP; decay tau = ∼2 s). Immunoidentification of recorded neurons revealed that all VP neurons, but only 20% of OT neurons, expressed the fDAP. The activation of the fDAP required influx of Ca2+ through voltage-gated Ca2+ channels as it was strongly suppressed in Ca2+-free extracellular solution or by bath application of Cd2+. Additionally, the current underlying the fDAP (IfDAP) is a Ca2+-activated current rather than a Ca2+ current per se as it was abolished by strongly buffering intracellular Ca2+ with BAPTA. The I-V relationship of the I fDAP was linear at potentials less than -60 mV but showed pronounced outward rectification near -50 mV. IfDAP is sensitive to changes in extracellular Na+ and K+ but not Cl-. A blocker of Ca2+-activated nonselective cation (CAN) currents, flufenamic acid, blocked the fDAP, suggesting the involvement of a CAN current in the generation of fDAP in VP neurons. We speculate that the two DAPs have different roles in generating after burst discharges and could play important roles in determining the distinct firing properties of VP neurons in the SON neurons.

AB - Oxytocin (OT) and vasopressin (VP) synthesizing magnocellular cells (MNCs) in the supraoptic nucleus (SON) display distinct firing patterns during the physiological demands for these hormones. Depolarizing afterpotentials (DAPs) in these neurons are involved in controlling phasic bursting in VP neurons. Our whole cell recordings demonstrated a Cs+-resistant fast DAP (fDAP; decay tau = ∼200 ms), which has not been previously reported, in addition to the well-known Cs+-sensitive slower DAP (sDAP; decay tau = ∼2 s). Immunoidentification of recorded neurons revealed that all VP neurons, but only 20% of OT neurons, expressed the fDAP. The activation of the fDAP required influx of Ca2+ through voltage-gated Ca2+ channels as it was strongly suppressed in Ca2+-free extracellular solution or by bath application of Cd2+. Additionally, the current underlying the fDAP (IfDAP) is a Ca2+-activated current rather than a Ca2+ current per se as it was abolished by strongly buffering intracellular Ca2+ with BAPTA. The I-V relationship of the I fDAP was linear at potentials less than -60 mV but showed pronounced outward rectification near -50 mV. IfDAP is sensitive to changes in extracellular Na+ and K+ but not Cl-. A blocker of Ca2+-activated nonselective cation (CAN) currents, flufenamic acid, blocked the fDAP, suggesting the involvement of a CAN current in the generation of fDAP in VP neurons. We speculate that the two DAPs have different roles in generating after burst discharges and could play important roles in determining the distinct firing properties of VP neurons in the SON neurons.

UR - http://www.scopus.com/inward/record.url?scp=36248983762&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36248983762&partnerID=8YFLogxK

U2 - 10.1152/jn.00599.2007

DO - 10.1152/jn.00599.2007

M3 - Article

VL - 98

SP - 2612

EP - 2621

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 5

ER -