Calcyclin Mediates Serum Response Element (SRE) Activation by an Osteoblastic Extracellular Cation-Sensing Mechanism

Qisheng Tu, Min Pi, Leigh Quarles

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

The molecular mechanism of sensing extracellular cations in osteoblasts is controversial. Using an expression-cloning strategy, the calcium-binding protein calcyclin was found to mediate the response of MC3T3-E1 osteoblasts to extracellular cations, but not the calcimimetic NPS-568, indicating the presence of another cation-sensing mechanism. Further understanding of calcyclin function in osteoblasts may identify novel targets for regulating bone formation. Introduction: Extracellular calcium and other cations seem to regulate the function of osteoblasts through a distinct calcium-sensing mechanism that is coupled to activation of c-fos gene transcription. The identity of this calcium-sensing mechanism is unknown. Methods: To identify molecules that participate in this extracellular cation-sensing pathway, we developed an expression cloning strategy in COS-7 cells using cation stimulation of a serum response element (SRE) luciferase reporter derived from the c-fos promoter to screen a mouse MC3T3-E1 osteoblast cDNA library. Results and Conclusions: We identified calcyclin (S100A6), a calcium-binding protein of the EF-hand type belonging to the S100 family, as being responsible for transferring a cation-sensing response from osteoblasts to COS-7 cells. Transfection of the calcyclin cDNA into COS-7 and HEK-293 cells confirmed that the overexpression of calcylin caused these cells to gain the ability to sense extracellular cations, including aluminum, gadolinium, calcium, and magnesium. Conversely, we found that an antisense calcyclin construct reduced calcyclin expression and partially inhibited the cation-sensing response in MC3T3-E1 osteoblasts. These results implicate calcyclin in the activation of SRE and establish a role for calcyclin as an accessory protein involved in the cation-sensing pathway in osteoblasts.

Original languageEnglish (US)
Pages (from-to)1825-1833
Number of pages9
JournalJournal of Bone and Mineral Research
Volume18
Issue number10
DOIs
StatePublished - Oct 1 2003

Fingerprint

Serum Response Element
Cations
Osteoblasts
Calcium
Calcium-Binding Proteins
COS Cells
N-(2-chlorophenylpropyl)-1-(3-methoxyphenyl)ethylamine
Organism Cloning
EF Hand Motifs
fos Genes
HEK293 Cells
Gadolinium
Luciferases
Aluminum
Gene Library
Osteogenesis
Magnesium
Transfection
Complementary DNA

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Orthopedics and Sports Medicine

Cite this

@article{b0d18953eabd4aabb85087418ee345e7,
title = "Calcyclin Mediates Serum Response Element (SRE) Activation by an Osteoblastic Extracellular Cation-Sensing Mechanism",
abstract = "The molecular mechanism of sensing extracellular cations in osteoblasts is controversial. Using an expression-cloning strategy, the calcium-binding protein calcyclin was found to mediate the response of MC3T3-E1 osteoblasts to extracellular cations, but not the calcimimetic NPS-568, indicating the presence of another cation-sensing mechanism. Further understanding of calcyclin function in osteoblasts may identify novel targets for regulating bone formation. Introduction: Extracellular calcium and other cations seem to regulate the function of osteoblasts through a distinct calcium-sensing mechanism that is coupled to activation of c-fos gene transcription. The identity of this calcium-sensing mechanism is unknown. Methods: To identify molecules that participate in this extracellular cation-sensing pathway, we developed an expression cloning strategy in COS-7 cells using cation stimulation of a serum response element (SRE) luciferase reporter derived from the c-fos promoter to screen a mouse MC3T3-E1 osteoblast cDNA library. Results and Conclusions: We identified calcyclin (S100A6), a calcium-binding protein of the EF-hand type belonging to the S100 family, as being responsible for transferring a cation-sensing response from osteoblasts to COS-7 cells. Transfection of the calcyclin cDNA into COS-7 and HEK-293 cells confirmed that the overexpression of calcylin caused these cells to gain the ability to sense extracellular cations, including aluminum, gadolinium, calcium, and magnesium. Conversely, we found that an antisense calcyclin construct reduced calcyclin expression and partially inhibited the cation-sensing response in MC3T3-E1 osteoblasts. These results implicate calcyclin in the activation of SRE and establish a role for calcyclin as an accessory protein involved in the cation-sensing pathway in osteoblasts.",
author = "Qisheng Tu and Min Pi and Leigh Quarles",
year = "2003",
month = "10",
day = "1",
doi = "10.1359/jbmr.2003.18.10.1825",
language = "English (US)",
volume = "18",
pages = "1825--1833",
journal = "Journal of Bone and Mineral Research",
issn = "0884-0431",
publisher = "Wiley-Blackwell",
number = "10",

}

TY - JOUR

T1 - Calcyclin Mediates Serum Response Element (SRE) Activation by an Osteoblastic Extracellular Cation-Sensing Mechanism

AU - Tu, Qisheng

AU - Pi, Min

AU - Quarles, Leigh

PY - 2003/10/1

Y1 - 2003/10/1

N2 - The molecular mechanism of sensing extracellular cations in osteoblasts is controversial. Using an expression-cloning strategy, the calcium-binding protein calcyclin was found to mediate the response of MC3T3-E1 osteoblasts to extracellular cations, but not the calcimimetic NPS-568, indicating the presence of another cation-sensing mechanism. Further understanding of calcyclin function in osteoblasts may identify novel targets for regulating bone formation. Introduction: Extracellular calcium and other cations seem to regulate the function of osteoblasts through a distinct calcium-sensing mechanism that is coupled to activation of c-fos gene transcription. The identity of this calcium-sensing mechanism is unknown. Methods: To identify molecules that participate in this extracellular cation-sensing pathway, we developed an expression cloning strategy in COS-7 cells using cation stimulation of a serum response element (SRE) luciferase reporter derived from the c-fos promoter to screen a mouse MC3T3-E1 osteoblast cDNA library. Results and Conclusions: We identified calcyclin (S100A6), a calcium-binding protein of the EF-hand type belonging to the S100 family, as being responsible for transferring a cation-sensing response from osteoblasts to COS-7 cells. Transfection of the calcyclin cDNA into COS-7 and HEK-293 cells confirmed that the overexpression of calcylin caused these cells to gain the ability to sense extracellular cations, including aluminum, gadolinium, calcium, and magnesium. Conversely, we found that an antisense calcyclin construct reduced calcyclin expression and partially inhibited the cation-sensing response in MC3T3-E1 osteoblasts. These results implicate calcyclin in the activation of SRE and establish a role for calcyclin as an accessory protein involved in the cation-sensing pathway in osteoblasts.

AB - The molecular mechanism of sensing extracellular cations in osteoblasts is controversial. Using an expression-cloning strategy, the calcium-binding protein calcyclin was found to mediate the response of MC3T3-E1 osteoblasts to extracellular cations, but not the calcimimetic NPS-568, indicating the presence of another cation-sensing mechanism. Further understanding of calcyclin function in osteoblasts may identify novel targets for regulating bone formation. Introduction: Extracellular calcium and other cations seem to regulate the function of osteoblasts through a distinct calcium-sensing mechanism that is coupled to activation of c-fos gene transcription. The identity of this calcium-sensing mechanism is unknown. Methods: To identify molecules that participate in this extracellular cation-sensing pathway, we developed an expression cloning strategy in COS-7 cells using cation stimulation of a serum response element (SRE) luciferase reporter derived from the c-fos promoter to screen a mouse MC3T3-E1 osteoblast cDNA library. Results and Conclusions: We identified calcyclin (S100A6), a calcium-binding protein of the EF-hand type belonging to the S100 family, as being responsible for transferring a cation-sensing response from osteoblasts to COS-7 cells. Transfection of the calcyclin cDNA into COS-7 and HEK-293 cells confirmed that the overexpression of calcylin caused these cells to gain the ability to sense extracellular cations, including aluminum, gadolinium, calcium, and magnesium. Conversely, we found that an antisense calcyclin construct reduced calcyclin expression and partially inhibited the cation-sensing response in MC3T3-E1 osteoblasts. These results implicate calcyclin in the activation of SRE and establish a role for calcyclin as an accessory protein involved in the cation-sensing pathway in osteoblasts.

UR - http://www.scopus.com/inward/record.url?scp=0142210074&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0142210074&partnerID=8YFLogxK

U2 - 10.1359/jbmr.2003.18.10.1825

DO - 10.1359/jbmr.2003.18.10.1825

M3 - Article

VL - 18

SP - 1825

EP - 1833

JO - Journal of Bone and Mineral Research

JF - Journal of Bone and Mineral Research

SN - 0884-0431

IS - 10

ER -