Cardiac interstitium in health and disease

The fibrillar collagen network

Research output: Contribution to journalArticle

741 Citations (Scopus)

Abstract

Composed of type I and III collagens, the valve leaflets, chordae tendineae and collagen matrix of the myocardium form a structural continuum. Synthesized by cardiac fibroblasts, these fibrillar collagens support and tether myocytes to maintain their alignment, whereas their respective tensile strength and resilience resist the deformation, maintain the shape and thickness, prevent the rupture and contribute to the passive and active stiffness of the myocardium. An acquired or congenital defect in this collagen network can lead to abnormalities in myocardial architecture, mechanics or valve function. In the hypertrophic process that accompanies a pressure overload, for example, increased collagen synthesis, fibroblast proliferation and a structural and biochemical remodeling of the matrix are seen. This includes distinctive patterns of reparative and reactive myocardial fibrosis, each of which alters diastolic and systolic myocardial stiffness and may lead to pathologic hypertrophy. Alternatively, a loss of collagen tethers or decline in matrix tensile strength can be responsible for regional or global transformations in myocardial architecture and function seen in the reperfused ("stunned") myocardium and in dilated (idiopathic) cardiopathy. Inherited disorders in the transcriptional and posttranslational processing of collagen can also alter the biophysical properties of the network. Future studies into collagen gene regulation, gene switching events and the control of collagen synthesis and degradation are needed to develop a more complete understanding of the relation between the collagen network and acquired and inherited forms of heart disease and to utilize therapeutics that will prevent, retard or regress abnormal collagen matrix remodeling.

Original languageEnglish (US)
Pages (from-to)1637-1652
Number of pages16
JournalJournal of the American College of Cardiology
Volume13
Issue number7
DOIs
StatePublished - Jan 1 1989

Fingerprint

Fibrillar Collagens
Collagen
Health
Tensile Strength
Myocardium
Fibroblasts
Chordae Tendineae
Myocardial Stunning
Collagen Type III
Collagen Type I
Mechanics
Muscle Cells
Hypertrophy
Genes
Rupture
Heart Diseases
Fibrosis
Pressure

All Science Journal Classification (ASJC) codes

  • Cardiology and Cardiovascular Medicine

Cite this

Cardiac interstitium in health and disease : The fibrillar collagen network. / Weber, Karl.

In: Journal of the American College of Cardiology, Vol. 13, No. 7, 01.01.1989, p. 1637-1652.

Research output: Contribution to journalArticle

@article{d629d4303b544a12b369a7dab275b036,
title = "Cardiac interstitium in health and disease: The fibrillar collagen network",
abstract = "Composed of type I and III collagens, the valve leaflets, chordae tendineae and collagen matrix of the myocardium form a structural continuum. Synthesized by cardiac fibroblasts, these fibrillar collagens support and tether myocytes to maintain their alignment, whereas their respective tensile strength and resilience resist the deformation, maintain the shape and thickness, prevent the rupture and contribute to the passive and active stiffness of the myocardium. An acquired or congenital defect in this collagen network can lead to abnormalities in myocardial architecture, mechanics or valve function. In the hypertrophic process that accompanies a pressure overload, for example, increased collagen synthesis, fibroblast proliferation and a structural and biochemical remodeling of the matrix are seen. This includes distinctive patterns of reparative and reactive myocardial fibrosis, each of which alters diastolic and systolic myocardial stiffness and may lead to pathologic hypertrophy. Alternatively, a loss of collagen tethers or decline in matrix tensile strength can be responsible for regional or global transformations in myocardial architecture and function seen in the reperfused ({"}stunned{"}) myocardium and in dilated (idiopathic) cardiopathy. Inherited disorders in the transcriptional and posttranslational processing of collagen can also alter the biophysical properties of the network. Future studies into collagen gene regulation, gene switching events and the control of collagen synthesis and degradation are needed to develop a more complete understanding of the relation between the collagen network and acquired and inherited forms of heart disease and to utilize therapeutics that will prevent, retard or regress abnormal collagen matrix remodeling.",
author = "Karl Weber",
year = "1989",
month = "1",
day = "1",
doi = "10.1016/0735-1097(89)90360-4",
language = "English (US)",
volume = "13",
pages = "1637--1652",
journal = "Journal of the American College of Cardiology",
issn = "0735-1097",
publisher = "Elsevier USA",
number = "7",

}

TY - JOUR

T1 - Cardiac interstitium in health and disease

T2 - The fibrillar collagen network

AU - Weber, Karl

PY - 1989/1/1

Y1 - 1989/1/1

N2 - Composed of type I and III collagens, the valve leaflets, chordae tendineae and collagen matrix of the myocardium form a structural continuum. Synthesized by cardiac fibroblasts, these fibrillar collagens support and tether myocytes to maintain their alignment, whereas their respective tensile strength and resilience resist the deformation, maintain the shape and thickness, prevent the rupture and contribute to the passive and active stiffness of the myocardium. An acquired or congenital defect in this collagen network can lead to abnormalities in myocardial architecture, mechanics or valve function. In the hypertrophic process that accompanies a pressure overload, for example, increased collagen synthesis, fibroblast proliferation and a structural and biochemical remodeling of the matrix are seen. This includes distinctive patterns of reparative and reactive myocardial fibrosis, each of which alters diastolic and systolic myocardial stiffness and may lead to pathologic hypertrophy. Alternatively, a loss of collagen tethers or decline in matrix tensile strength can be responsible for regional or global transformations in myocardial architecture and function seen in the reperfused ("stunned") myocardium and in dilated (idiopathic) cardiopathy. Inherited disorders in the transcriptional and posttranslational processing of collagen can also alter the biophysical properties of the network. Future studies into collagen gene regulation, gene switching events and the control of collagen synthesis and degradation are needed to develop a more complete understanding of the relation between the collagen network and acquired and inherited forms of heart disease and to utilize therapeutics that will prevent, retard or regress abnormal collagen matrix remodeling.

AB - Composed of type I and III collagens, the valve leaflets, chordae tendineae and collagen matrix of the myocardium form a structural continuum. Synthesized by cardiac fibroblasts, these fibrillar collagens support and tether myocytes to maintain their alignment, whereas their respective tensile strength and resilience resist the deformation, maintain the shape and thickness, prevent the rupture and contribute to the passive and active stiffness of the myocardium. An acquired or congenital defect in this collagen network can lead to abnormalities in myocardial architecture, mechanics or valve function. In the hypertrophic process that accompanies a pressure overload, for example, increased collagen synthesis, fibroblast proliferation and a structural and biochemical remodeling of the matrix are seen. This includes distinctive patterns of reparative and reactive myocardial fibrosis, each of which alters diastolic and systolic myocardial stiffness and may lead to pathologic hypertrophy. Alternatively, a loss of collagen tethers or decline in matrix tensile strength can be responsible for regional or global transformations in myocardial architecture and function seen in the reperfused ("stunned") myocardium and in dilated (idiopathic) cardiopathy. Inherited disorders in the transcriptional and posttranslational processing of collagen can also alter the biophysical properties of the network. Future studies into collagen gene regulation, gene switching events and the control of collagen synthesis and degradation are needed to develop a more complete understanding of the relation between the collagen network and acquired and inherited forms of heart disease and to utilize therapeutics that will prevent, retard or regress abnormal collagen matrix remodeling.

UR - http://www.scopus.com/inward/record.url?scp=0024319420&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024319420&partnerID=8YFLogxK

U2 - 10.1016/0735-1097(89)90360-4

DO - 10.1016/0735-1097(89)90360-4

M3 - Article

VL - 13

SP - 1637

EP - 1652

JO - Journal of the American College of Cardiology

JF - Journal of the American College of Cardiology

SN - 0735-1097

IS - 7

ER -