Ca2+/calmodulin-dependent protein kinase II binds to and phosphorylates a specific SAP97 splice variant to disrupt association with AKAP79/150 and modulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPAR) activity

Yelyzaveta A. Nikandrova, Yuxia Jiao, Anthony J. Baucum, Steven Tavalin, Roger J. Colhran

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes trafficking and activation of the GluR1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) during synaptic plasticity. GluR1 is also modulated in parallel by multiprotein complexes coordinated by synapse-associated protein 97 (SAP97) that contain A-kinase anchoring protein 79/150 (AKAP79/150), protein kinase A, and protein phosphatase 2B. Here we show that SAP97 is present in CaMKII immune complexes isolated from rodent brain as well as from HEK293 cells co-expressing CaMKIIα and SAP97. CaMKIIα phosphorylated recombinant SAP97 within immune complexes in vitro and in intact cells. Four alternative mRNA splice variants of SAP97 expressing combinations of four inserts (I2, I3, I4, I5) in the U5 region between Src homology 3 (SH3) and guanylyl kinase-like (GK) domains were identified in rat brain at postnatal day 21. CaMKIIα preferentially phosphorylated a full-length SAP97 and a glutathione S-transferase (GST) fusion protein containing the I3 and I5 inserts (SAP97-I3I5 and GST-SH3-I3I5-GK, respectively) and also specifically interacted with GST-SH3-I3I5-GK compared with GST proteins containing other naturally occurring insert combinations. AKAP79/150 also directly and specifically bound only to GST-SH3-I3I5-GK, but CaMKII phosphorylation of GST-SH3-I3I5-GK prevented this interaction. AKAP79-dependent down-regulation of GluR1 AMPAR currents was ablated by overexpression of SAP97-I2I5 (which does not bind AKAP79) or by infusion of active CaMKIIα. Collectively, the data suggest that CaMKIIα targets a specific SAP97 splice variant to disengage AKAP79/150 from regulating GluR1 AMPARs, providing new insight into protein-protein interactions and phosphorylation events that are required for normal regulation of glutamatergic synaptic transmission, learning, and memory.

Original languageEnglish (US)
Pages (from-to)923-934
Number of pages12
JournalJournal of Biological Chemistry
Volume285
Issue number2
DOIs
StatePublished - Jan 19 2010

Fingerprint

Calcium-Calmodulin-Dependent Protein Kinase Type 2
Glutamate Receptors
Protein Kinases
Protein Isoforms
Phosphotransferases
Association reactions
Glutathione Transferase
Acids
Proteins
Phosphorylation
Antigen-Antibody Complex
Brain
human DLG1 protein
Multiprotein Complexes
Neuronal Plasticity
Calcineurin
HEK293 Cells
Cyclic AMP-Dependent Protein Kinases
Synaptic Transmission
Plasticity

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

@article{500b07d5c96141ef9f9dd6c9a1108268,
title = "Ca2+/calmodulin-dependent protein kinase II binds to and phosphorylates a specific SAP97 splice variant to disrupt association with AKAP79/150 and modulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPAR) activity",
abstract = "Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes trafficking and activation of the GluR1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) during synaptic plasticity. GluR1 is also modulated in parallel by multiprotein complexes coordinated by synapse-associated protein 97 (SAP97) that contain A-kinase anchoring protein 79/150 (AKAP79/150), protein kinase A, and protein phosphatase 2B. Here we show that SAP97 is present in CaMKII immune complexes isolated from rodent brain as well as from HEK293 cells co-expressing CaMKIIα and SAP97. CaMKIIα phosphorylated recombinant SAP97 within immune complexes in vitro and in intact cells. Four alternative mRNA splice variants of SAP97 expressing combinations of four inserts (I2, I3, I4, I5) in the U5 region between Src homology 3 (SH3) and guanylyl kinase-like (GK) domains were identified in rat brain at postnatal day 21. CaMKIIα preferentially phosphorylated a full-length SAP97 and a glutathione S-transferase (GST) fusion protein containing the I3 and I5 inserts (SAP97-I3I5 and GST-SH3-I3I5-GK, respectively) and also specifically interacted with GST-SH3-I3I5-GK compared with GST proteins containing other naturally occurring insert combinations. AKAP79/150 also directly and specifically bound only to GST-SH3-I3I5-GK, but CaMKII phosphorylation of GST-SH3-I3I5-GK prevented this interaction. AKAP79-dependent down-regulation of GluR1 AMPAR currents was ablated by overexpression of SAP97-I2I5 (which does not bind AKAP79) or by infusion of active CaMKIIα. Collectively, the data suggest that CaMKIIα targets a specific SAP97 splice variant to disengage AKAP79/150 from regulating GluR1 AMPARs, providing new insight into protein-protein interactions and phosphorylation events that are required for normal regulation of glutamatergic synaptic transmission, learning, and memory.",
author = "Nikandrova, {Yelyzaveta A.} and Yuxia Jiao and Baucum, {Anthony J.} and Steven Tavalin and Colhran, {Roger J.}",
year = "2010",
month = "1",
day = "19",
doi = "10.1074/jbc.M109.033985",
language = "English (US)",
volume = "285",
pages = "923--934",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "2",

}

TY - JOUR

T1 - Ca2+/calmodulin-dependent protein kinase II binds to and phosphorylates a specific SAP97 splice variant to disrupt association with AKAP79/150 and modulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPAR) activity

AU - Nikandrova, Yelyzaveta A.

AU - Jiao, Yuxia

AU - Baucum, Anthony J.

AU - Tavalin, Steven

AU - Colhran, Roger J.

PY - 2010/1/19

Y1 - 2010/1/19

N2 - Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes trafficking and activation of the GluR1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) during synaptic plasticity. GluR1 is also modulated in parallel by multiprotein complexes coordinated by synapse-associated protein 97 (SAP97) that contain A-kinase anchoring protein 79/150 (AKAP79/150), protein kinase A, and protein phosphatase 2B. Here we show that SAP97 is present in CaMKII immune complexes isolated from rodent brain as well as from HEK293 cells co-expressing CaMKIIα and SAP97. CaMKIIα phosphorylated recombinant SAP97 within immune complexes in vitro and in intact cells. Four alternative mRNA splice variants of SAP97 expressing combinations of four inserts (I2, I3, I4, I5) in the U5 region between Src homology 3 (SH3) and guanylyl kinase-like (GK) domains were identified in rat brain at postnatal day 21. CaMKIIα preferentially phosphorylated a full-length SAP97 and a glutathione S-transferase (GST) fusion protein containing the I3 and I5 inserts (SAP97-I3I5 and GST-SH3-I3I5-GK, respectively) and also specifically interacted with GST-SH3-I3I5-GK compared with GST proteins containing other naturally occurring insert combinations. AKAP79/150 also directly and specifically bound only to GST-SH3-I3I5-GK, but CaMKII phosphorylation of GST-SH3-I3I5-GK prevented this interaction. AKAP79-dependent down-regulation of GluR1 AMPAR currents was ablated by overexpression of SAP97-I2I5 (which does not bind AKAP79) or by infusion of active CaMKIIα. Collectively, the data suggest that CaMKIIα targets a specific SAP97 splice variant to disengage AKAP79/150 from regulating GluR1 AMPARs, providing new insight into protein-protein interactions and phosphorylation events that are required for normal regulation of glutamatergic synaptic transmission, learning, and memory.

AB - Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes trafficking and activation of the GluR1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) during synaptic plasticity. GluR1 is also modulated in parallel by multiprotein complexes coordinated by synapse-associated protein 97 (SAP97) that contain A-kinase anchoring protein 79/150 (AKAP79/150), protein kinase A, and protein phosphatase 2B. Here we show that SAP97 is present in CaMKII immune complexes isolated from rodent brain as well as from HEK293 cells co-expressing CaMKIIα and SAP97. CaMKIIα phosphorylated recombinant SAP97 within immune complexes in vitro and in intact cells. Four alternative mRNA splice variants of SAP97 expressing combinations of four inserts (I2, I3, I4, I5) in the U5 region between Src homology 3 (SH3) and guanylyl kinase-like (GK) domains were identified in rat brain at postnatal day 21. CaMKIIα preferentially phosphorylated a full-length SAP97 and a glutathione S-transferase (GST) fusion protein containing the I3 and I5 inserts (SAP97-I3I5 and GST-SH3-I3I5-GK, respectively) and also specifically interacted with GST-SH3-I3I5-GK compared with GST proteins containing other naturally occurring insert combinations. AKAP79/150 also directly and specifically bound only to GST-SH3-I3I5-GK, but CaMKII phosphorylation of GST-SH3-I3I5-GK prevented this interaction. AKAP79-dependent down-regulation of GluR1 AMPAR currents was ablated by overexpression of SAP97-I2I5 (which does not bind AKAP79) or by infusion of active CaMKIIα. Collectively, the data suggest that CaMKIIα targets a specific SAP97 splice variant to disengage AKAP79/150 from regulating GluR1 AMPARs, providing new insight into protein-protein interactions and phosphorylation events that are required for normal regulation of glutamatergic synaptic transmission, learning, and memory.

UR - http://www.scopus.com/inward/record.url?scp=74049160407&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=74049160407&partnerID=8YFLogxK

U2 - 10.1074/jbc.M109.033985

DO - 10.1074/jbc.M109.033985

M3 - Article

VL - 285

SP - 923

EP - 934

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 2

ER -