Cerebroprotective effects of the CO-releasing molecule CORM-A1 against seizure-induced neonatal vascular injury

Aliz Zimmermann, Charles Leffler, Dilyara Tcheranova, Alexander L. Fedinec, Elena Parfenova

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

Endogenous CO, a product of heme oxygenase activity, has vasodilator and cytoprotective effects in the cerebral circulation of newborn pigs. CO-releasing molecule (CORM)-A1 (sodium boranocarbonate) is a novel, water-soluble, CO-releasing compound. We addressed the hypotheses that CORM-A1 1) can deliver CO to the brain and exert effects of CO on the cerebral microvasculature and 2) is cerebroprotective. Acute and delayed effects of topically and systemically administered CORM-A1 on cerebrovascular and systemic circulatory parameters were determined in anesthetized newborn pigs with implanted closed cranial windows. Topical application of CORM-A1 (10-7-10-5 M) to the brain produced concentration-dependent CO release and pial arteriolar dilation. Systemically administered CORM-A1 (2 mg/kg ip or iv) caused pial arteriolar dilation and increased cortical cerebrospinal fluid CO concentration. Systemic CORM-A1 did not have acute or delayed effects on blood pressure, heart rate, or blood gases. Potential cerebroprotective vascular effects of CORM-A1 (2 mg/kg ip, 30 min before seizures) were tested 2 days after bicuculline-induced epileptic seizures (late postictal period). In control piglets, seizures reduced postictal cerebrovascular responsiveness to selective physiologically relevant vasodilators (bradykinin, hemin, and isoproterenol) indicative of cerebrovascular injury. In contrast, in CORM-A1-pretreated animals, no loss of postictal cerebrovascular reactivity was observed. We conclude that systemically administered CORM-A1 delivers CO to the brain, elicits the vasodilator and cytoprotective effects of CO in the cerebral circulation, and protects the neonatal brain from cerebrovascular injury caused by epileptic seizures.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume293
Issue number4
DOIs
StatePublished - Oct 1 2007

Fingerprint

Vascular System Injuries
Carbon Monoxide
Seizures
Cerebrovascular Circulation
Vasodilator Agents
Dilatation
Epilepsy
Brain
Swine
Heme Oxygenase (Decyclizing)
Hemin
Bicuculline
Bradykinin
Microvessels
Isoproterenol

All Science Journal Classification (ASJC) codes

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Cite this

Cerebroprotective effects of the CO-releasing molecule CORM-A1 against seizure-induced neonatal vascular injury. / Zimmermann, Aliz; Leffler, Charles; Tcheranova, Dilyara; Fedinec, Alexander L.; Parfenova, Elena.

In: American Journal of Physiology - Heart and Circulatory Physiology, Vol. 293, No. 4, 01.10.2007.

Research output: Contribution to journalArticle

@article{176c0148d7814606bc27d56331419481,
title = "Cerebroprotective effects of the CO-releasing molecule CORM-A1 against seizure-induced neonatal vascular injury",
abstract = "Endogenous CO, a product of heme oxygenase activity, has vasodilator and cytoprotective effects in the cerebral circulation of newborn pigs. CO-releasing molecule (CORM)-A1 (sodium boranocarbonate) is a novel, water-soluble, CO-releasing compound. We addressed the hypotheses that CORM-A1 1) can deliver CO to the brain and exert effects of CO on the cerebral microvasculature and 2) is cerebroprotective. Acute and delayed effects of topically and systemically administered CORM-A1 on cerebrovascular and systemic circulatory parameters were determined in anesthetized newborn pigs with implanted closed cranial windows. Topical application of CORM-A1 (10-7-10-5 M) to the brain produced concentration-dependent CO release and pial arteriolar dilation. Systemically administered CORM-A1 (2 mg/kg ip or iv) caused pial arteriolar dilation and increased cortical cerebrospinal fluid CO concentration. Systemic CORM-A1 did not have acute or delayed effects on blood pressure, heart rate, or blood gases. Potential cerebroprotective vascular effects of CORM-A1 (2 mg/kg ip, 30 min before seizures) were tested 2 days after bicuculline-induced epileptic seizures (late postictal period). In control piglets, seizures reduced postictal cerebrovascular responsiveness to selective physiologically relevant vasodilators (bradykinin, hemin, and isoproterenol) indicative of cerebrovascular injury. In contrast, in CORM-A1-pretreated animals, no loss of postictal cerebrovascular reactivity was observed. We conclude that systemically administered CORM-A1 delivers CO to the brain, elicits the vasodilator and cytoprotective effects of CO in the cerebral circulation, and protects the neonatal brain from cerebrovascular injury caused by epileptic seizures.",
author = "Aliz Zimmermann and Charles Leffler and Dilyara Tcheranova and Fedinec, {Alexander L.} and Elena Parfenova",
year = "2007",
month = "10",
day = "1",
doi = "10.1152/ajpheart.00354.2007",
language = "English (US)",
volume = "293",
journal = "American Journal of Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Cerebroprotective effects of the CO-releasing molecule CORM-A1 against seizure-induced neonatal vascular injury

AU - Zimmermann, Aliz

AU - Leffler, Charles

AU - Tcheranova, Dilyara

AU - Fedinec, Alexander L.

AU - Parfenova, Elena

PY - 2007/10/1

Y1 - 2007/10/1

N2 - Endogenous CO, a product of heme oxygenase activity, has vasodilator and cytoprotective effects in the cerebral circulation of newborn pigs. CO-releasing molecule (CORM)-A1 (sodium boranocarbonate) is a novel, water-soluble, CO-releasing compound. We addressed the hypotheses that CORM-A1 1) can deliver CO to the brain and exert effects of CO on the cerebral microvasculature and 2) is cerebroprotective. Acute and delayed effects of topically and systemically administered CORM-A1 on cerebrovascular and systemic circulatory parameters were determined in anesthetized newborn pigs with implanted closed cranial windows. Topical application of CORM-A1 (10-7-10-5 M) to the brain produced concentration-dependent CO release and pial arteriolar dilation. Systemically administered CORM-A1 (2 mg/kg ip or iv) caused pial arteriolar dilation and increased cortical cerebrospinal fluid CO concentration. Systemic CORM-A1 did not have acute or delayed effects on blood pressure, heart rate, or blood gases. Potential cerebroprotective vascular effects of CORM-A1 (2 mg/kg ip, 30 min before seizures) were tested 2 days after bicuculline-induced epileptic seizures (late postictal period). In control piglets, seizures reduced postictal cerebrovascular responsiveness to selective physiologically relevant vasodilators (bradykinin, hemin, and isoproterenol) indicative of cerebrovascular injury. In contrast, in CORM-A1-pretreated animals, no loss of postictal cerebrovascular reactivity was observed. We conclude that systemically administered CORM-A1 delivers CO to the brain, elicits the vasodilator and cytoprotective effects of CO in the cerebral circulation, and protects the neonatal brain from cerebrovascular injury caused by epileptic seizures.

AB - Endogenous CO, a product of heme oxygenase activity, has vasodilator and cytoprotective effects in the cerebral circulation of newborn pigs. CO-releasing molecule (CORM)-A1 (sodium boranocarbonate) is a novel, water-soluble, CO-releasing compound. We addressed the hypotheses that CORM-A1 1) can deliver CO to the brain and exert effects of CO on the cerebral microvasculature and 2) is cerebroprotective. Acute and delayed effects of topically and systemically administered CORM-A1 on cerebrovascular and systemic circulatory parameters were determined in anesthetized newborn pigs with implanted closed cranial windows. Topical application of CORM-A1 (10-7-10-5 M) to the brain produced concentration-dependent CO release and pial arteriolar dilation. Systemically administered CORM-A1 (2 mg/kg ip or iv) caused pial arteriolar dilation and increased cortical cerebrospinal fluid CO concentration. Systemic CORM-A1 did not have acute or delayed effects on blood pressure, heart rate, or blood gases. Potential cerebroprotective vascular effects of CORM-A1 (2 mg/kg ip, 30 min before seizures) were tested 2 days after bicuculline-induced epileptic seizures (late postictal period). In control piglets, seizures reduced postictal cerebrovascular responsiveness to selective physiologically relevant vasodilators (bradykinin, hemin, and isoproterenol) indicative of cerebrovascular injury. In contrast, in CORM-A1-pretreated animals, no loss of postictal cerebrovascular reactivity was observed. We conclude that systemically administered CORM-A1 delivers CO to the brain, elicits the vasodilator and cytoprotective effects of CO in the cerebral circulation, and protects the neonatal brain from cerebrovascular injury caused by epileptic seizures.

UR - http://www.scopus.com/inward/record.url?scp=35349005733&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=35349005733&partnerID=8YFLogxK

U2 - 10.1152/ajpheart.00354.2007

DO - 10.1152/ajpheart.00354.2007

M3 - Article

C2 - 17630349

AN - SCOPUS:35349005733

VL - 293

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0363-6135

IS - 4

ER -