Comparative analysis of polymers for short interfering RNA delivery in vascular smooth muscle cells

Lindsay M. Bools, Richard K. Fisher, Oscar Grandas, Stacy S. Kirkpatrick, Joshua Arnold, Mitchell Goldman, Michael Freeman, Deidra Mountain

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

The use of short interfering RNA (siRNA) to degrade messenger RNA in the cell cytoplasm and transiently attenuate intracellular proteins shows promise in the inhibition of vascular pathogenesis. However, a critical obstacle for therapeutic application is a safe and effective delivery system. Biodegradable polymers are promising alternative molecular carriers for genetic material. Here, we aim to perform a comparative analysis of poly(B-amino ester) (PBAE) and polyethylenimine (PEI) polymers in their efficacy for vascular smooth muscle cell transfection using siRNA against the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) housekeeping gene as our test target. Methods Human aortic smooth muscle cells (HASMC) were transfected in vitro with polymers conjugated to GAPDH or negative control (NC) siRNAs. Increasing siRNA:polymer ratios were tested for optimal transfection efficiency. DharmaFECT2 chemical transfection complexes were used for comparative analysis. Live/dead dual stain was used to measure cell viability, and GAPDH gene silencing was measured by quantitative polymerase chain reaction normalized to 18S. Results The highest rate of PEI-mediated silencing was achieved with a 9μL polymer:220 pmol/mL siRNA conjugate (16 ± 2% expression versus NC; n = 6). Comparable PBAE-mediated silencing could be achieved with a 1.95μL polymer:100 pmol/mL siRNA conjugate (10 ± 1% expression versus NC; n = 5). Transfection using PEIs resulted in silencing equivalent to other methods but with less efficiency and increased cell toxicity at 24h polymer exposure. Decreasing PEI exposure time to 4 h resulted in similar silencing efficacy (21 ± 9% expression versus NC, n = 6) with an improved toxicity profile. Conclusions Polymeric bioconjugates transfected HASMCs in a manner similar to chemical complexes, with comparable cell toxicity and silencing efficiency. PEI bioconjugates demonstrated silencing equivalent to PBAE bioconjugates, although less efficient in terms of required polymer concentrations. Given the cost-to-benefit difference between the assayed polymers, and PEI's ability to transfect HASMCs within a short duration of exposure with an improved toxicity profile, this study shows that PEI bioconjugates are a potential transfection agent for vascular tissue. Future studies will expand on this method of gene therapy to validate delivery of gene-specific inhibitors aimed at attenuating smooth muscle cell proliferation, adhesion, and migration. These studies will lay the framework for our future experimental plans to expand on this method of gene therapy for in vivo transfection in animal models of vascular disease.

Original languageEnglish (US)
Pages (from-to)266-273
Number of pages8
JournalJournal of Surgical Research
Volume199
Issue number1
DOIs
StatePublished - Nov 1 2015

Fingerprint

Vascular Smooth Muscle
Small Interfering RNA
Smooth Muscle Myocytes
Polymers
Polyethyleneimine
Transfection
Glyceraldehyde-3-Phosphate Dehydrogenases
Esters
Genetic Therapy
Blood Vessels
Essential Genes
Gene Silencing
Vascular Diseases
Cell Adhesion
Genes
Cost-Benefit Analysis
Cell Movement
Molecular Biology
Cell Survival
Cytoplasm

All Science Journal Classification (ASJC) codes

  • Surgery

Cite this

Comparative analysis of polymers for short interfering RNA delivery in vascular smooth muscle cells. / Bools, Lindsay M.; Fisher, Richard K.; Grandas, Oscar; Kirkpatrick, Stacy S.; Arnold, Joshua; Goldman, Mitchell; Freeman, Michael; Mountain, Deidra.

In: Journal of Surgical Research, Vol. 199, No. 1, 01.11.2015, p. 266-273.

Research output: Contribution to journalArticle

@article{cb65c803cad14ce08f9adc7b5b6f67ed,
title = "Comparative analysis of polymers for short interfering RNA delivery in vascular smooth muscle cells",
abstract = "The use of short interfering RNA (siRNA) to degrade messenger RNA in the cell cytoplasm and transiently attenuate intracellular proteins shows promise in the inhibition of vascular pathogenesis. However, a critical obstacle for therapeutic application is a safe and effective delivery system. Biodegradable polymers are promising alternative molecular carriers for genetic material. Here, we aim to perform a comparative analysis of poly(B-amino ester) (PBAE) and polyethylenimine (PEI) polymers in their efficacy for vascular smooth muscle cell transfection using siRNA against the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) housekeeping gene as our test target. Methods Human aortic smooth muscle cells (HASMC) were transfected in vitro with polymers conjugated to GAPDH or negative control (NC) siRNAs. Increasing siRNA:polymer ratios were tested for optimal transfection efficiency. DharmaFECT2 chemical transfection complexes were used for comparative analysis. Live/dead dual stain was used to measure cell viability, and GAPDH gene silencing was measured by quantitative polymerase chain reaction normalized to 18S. Results The highest rate of PEI-mediated silencing was achieved with a 9μL polymer:220 pmol/mL siRNA conjugate (16 ± 2{\%} expression versus NC; n = 6). Comparable PBAE-mediated silencing could be achieved with a 1.95μL polymer:100 pmol/mL siRNA conjugate (10 ± 1{\%} expression versus NC; n = 5). Transfection using PEIs resulted in silencing equivalent to other methods but with less efficiency and increased cell toxicity at 24h polymer exposure. Decreasing PEI exposure time to 4 h resulted in similar silencing efficacy (21 ± 9{\%} expression versus NC, n = 6) with an improved toxicity profile. Conclusions Polymeric bioconjugates transfected HASMCs in a manner similar to chemical complexes, with comparable cell toxicity and silencing efficiency. PEI bioconjugates demonstrated silencing equivalent to PBAE bioconjugates, although less efficient in terms of required polymer concentrations. Given the cost-to-benefit difference between the assayed polymers, and PEI's ability to transfect HASMCs within a short duration of exposure with an improved toxicity profile, this study shows that PEI bioconjugates are a potential transfection agent for vascular tissue. Future studies will expand on this method of gene therapy to validate delivery of gene-specific inhibitors aimed at attenuating smooth muscle cell proliferation, adhesion, and migration. These studies will lay the framework for our future experimental plans to expand on this method of gene therapy for in vivo transfection in animal models of vascular disease.",
author = "Bools, {Lindsay M.} and Fisher, {Richard K.} and Oscar Grandas and Kirkpatrick, {Stacy S.} and Joshua Arnold and Mitchell Goldman and Michael Freeman and Deidra Mountain",
year = "2015",
month = "11",
day = "1",
doi = "10.1016/j.jss.2015.07.025",
language = "English (US)",
volume = "199",
pages = "266--273",
journal = "Journal of Surgical Research",
issn = "0022-4804",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Comparative analysis of polymers for short interfering RNA delivery in vascular smooth muscle cells

AU - Bools, Lindsay M.

AU - Fisher, Richard K.

AU - Grandas, Oscar

AU - Kirkpatrick, Stacy S.

AU - Arnold, Joshua

AU - Goldman, Mitchell

AU - Freeman, Michael

AU - Mountain, Deidra

PY - 2015/11/1

Y1 - 2015/11/1

N2 - The use of short interfering RNA (siRNA) to degrade messenger RNA in the cell cytoplasm and transiently attenuate intracellular proteins shows promise in the inhibition of vascular pathogenesis. However, a critical obstacle for therapeutic application is a safe and effective delivery system. Biodegradable polymers are promising alternative molecular carriers for genetic material. Here, we aim to perform a comparative analysis of poly(B-amino ester) (PBAE) and polyethylenimine (PEI) polymers in their efficacy for vascular smooth muscle cell transfection using siRNA against the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) housekeeping gene as our test target. Methods Human aortic smooth muscle cells (HASMC) were transfected in vitro with polymers conjugated to GAPDH or negative control (NC) siRNAs. Increasing siRNA:polymer ratios were tested for optimal transfection efficiency. DharmaFECT2 chemical transfection complexes were used for comparative analysis. Live/dead dual stain was used to measure cell viability, and GAPDH gene silencing was measured by quantitative polymerase chain reaction normalized to 18S. Results The highest rate of PEI-mediated silencing was achieved with a 9μL polymer:220 pmol/mL siRNA conjugate (16 ± 2% expression versus NC; n = 6). Comparable PBAE-mediated silencing could be achieved with a 1.95μL polymer:100 pmol/mL siRNA conjugate (10 ± 1% expression versus NC; n = 5). Transfection using PEIs resulted in silencing equivalent to other methods but with less efficiency and increased cell toxicity at 24h polymer exposure. Decreasing PEI exposure time to 4 h resulted in similar silencing efficacy (21 ± 9% expression versus NC, n = 6) with an improved toxicity profile. Conclusions Polymeric bioconjugates transfected HASMCs in a manner similar to chemical complexes, with comparable cell toxicity and silencing efficiency. PEI bioconjugates demonstrated silencing equivalent to PBAE bioconjugates, although less efficient in terms of required polymer concentrations. Given the cost-to-benefit difference between the assayed polymers, and PEI's ability to transfect HASMCs within a short duration of exposure with an improved toxicity profile, this study shows that PEI bioconjugates are a potential transfection agent for vascular tissue. Future studies will expand on this method of gene therapy to validate delivery of gene-specific inhibitors aimed at attenuating smooth muscle cell proliferation, adhesion, and migration. These studies will lay the framework for our future experimental plans to expand on this method of gene therapy for in vivo transfection in animal models of vascular disease.

AB - The use of short interfering RNA (siRNA) to degrade messenger RNA in the cell cytoplasm and transiently attenuate intracellular proteins shows promise in the inhibition of vascular pathogenesis. However, a critical obstacle for therapeutic application is a safe and effective delivery system. Biodegradable polymers are promising alternative molecular carriers for genetic material. Here, we aim to perform a comparative analysis of poly(B-amino ester) (PBAE) and polyethylenimine (PEI) polymers in their efficacy for vascular smooth muscle cell transfection using siRNA against the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) housekeeping gene as our test target. Methods Human aortic smooth muscle cells (HASMC) were transfected in vitro with polymers conjugated to GAPDH or negative control (NC) siRNAs. Increasing siRNA:polymer ratios were tested for optimal transfection efficiency. DharmaFECT2 chemical transfection complexes were used for comparative analysis. Live/dead dual stain was used to measure cell viability, and GAPDH gene silencing was measured by quantitative polymerase chain reaction normalized to 18S. Results The highest rate of PEI-mediated silencing was achieved with a 9μL polymer:220 pmol/mL siRNA conjugate (16 ± 2% expression versus NC; n = 6). Comparable PBAE-mediated silencing could be achieved with a 1.95μL polymer:100 pmol/mL siRNA conjugate (10 ± 1% expression versus NC; n = 5). Transfection using PEIs resulted in silencing equivalent to other methods but with less efficiency and increased cell toxicity at 24h polymer exposure. Decreasing PEI exposure time to 4 h resulted in similar silencing efficacy (21 ± 9% expression versus NC, n = 6) with an improved toxicity profile. Conclusions Polymeric bioconjugates transfected HASMCs in a manner similar to chemical complexes, with comparable cell toxicity and silencing efficiency. PEI bioconjugates demonstrated silencing equivalent to PBAE bioconjugates, although less efficient in terms of required polymer concentrations. Given the cost-to-benefit difference between the assayed polymers, and PEI's ability to transfect HASMCs within a short duration of exposure with an improved toxicity profile, this study shows that PEI bioconjugates are a potential transfection agent for vascular tissue. Future studies will expand on this method of gene therapy to validate delivery of gene-specific inhibitors aimed at attenuating smooth muscle cell proliferation, adhesion, and migration. These studies will lay the framework for our future experimental plans to expand on this method of gene therapy for in vivo transfection in animal models of vascular disease.

UR - http://www.scopus.com/inward/record.url?scp=84944162297&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84944162297&partnerID=8YFLogxK

U2 - 10.1016/j.jss.2015.07.025

DO - 10.1016/j.jss.2015.07.025

M3 - Article

C2 - 26272685

AN - SCOPUS:84944162297

VL - 199

SP - 266

EP - 273

JO - Journal of Surgical Research

JF - Journal of Surgical Research

SN - 0022-4804

IS - 1

ER -