Conditional Mesenchymal Disruption of Pkd1 Results in Osteopenia and Polycystic Kidney Disease

Ni Qiu, Zhousheng Xiao, Li Cao, Valentin David, Leigh Quarles

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Conditional deletion of Pkd1 in osteoblasts using either Osteocalcin(Oc)-Cre or Dmp1-Cre results in defective osteoblast-mediated postnatal bone formation and osteopenia. Pkd1 is also expressed in undifferentiated mesenchyme that gives rise to the osteoblast lineage. To examine the effects of Pkd1 on prenatal osteoblast development, we crossed Pkd1flox/flox and Col1a1(3.6)-Cre mice, which has been used to achieve selective inactivation of Pkd1 earlier in the osteoblast lineage. Control Pkd1flox/flox and Pkd1flox/+, heterozygous Col1a1(3.6)-Cre;Pkd1flox/+ and Pkd1flox/null, and homozygous Col1a1(3.6)-Cre;Pkd1flox/flox and Col1a1(3.6)-Cre;Pkd1flox/null mice were analyzed at ages ranging from E14.5 to 8-weeks-old. Newborn Col1a1(3.6)-Cre;Pkd1flox/null mice exhibited defective skeletogenesis in association with a greater reduction in Pkd1 expression in bone. Conditional Col1a1(3.6)-Cre;Pkd1flox/+ and Col1a1(3.6)-Cre;Pkd1flox/flox mice displayed a gene dose-dependent decrease in bone formation and increase in marrow fat at 6 weeks of age. Bone marrow stromal cell and primary osteoblast cultures from homozygous Col1a1(3.6)-Cre;Pkd1flox/flox mice showed increased proliferation, impaired osteoblast development and enhanced adipogenesis ex vivo. Unexpectedly, we found evidence for Col1a1(3.6)-Cre mediated deletion of Pkd1 in extraskeletal tissues in Col1a1(3.6)-Cre;Pkd1flox/flox mice. Deletion of Pkd1 in mesenchymal precursors resulted in pancreatic and renal, but not hepatic, cyst formation. The non-lethality of Col1a1(3.6)-Cre;Pkd1flox/flox mice establishes a new model to study abnormalities in bone development and cyst formation in pancreas and kidney caused by Pkd1 gene inactivation.

Original languageEnglish (US)
Article numbere46038
JournalPLoS One
Volume7
Issue number9
DOIs
StatePublished - Sep 21 2012

Fingerprint

osteopenia
Polycystic Kidney Diseases
osteoblasts
Metabolic Bone Diseases
Osteoblasts
Bone
mice
bone formation
Osteogenesis
inactivation
Genes
kidneys
Kidney
Bone Cysts
Adipogenesis
osteocalcin
skeletal development
stromal cells
Bone Development
Osteocalcin

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Conditional Mesenchymal Disruption of Pkd1 Results in Osteopenia and Polycystic Kidney Disease. / Qiu, Ni; Xiao, Zhousheng; Cao, Li; David, Valentin; Quarles, Leigh.

In: PLoS One, Vol. 7, No. 9, e46038, 21.09.2012.

Research output: Contribution to journalArticle

@article{4d3441b524884c198d07dee654e81ea7,
title = "Conditional Mesenchymal Disruption of Pkd1 Results in Osteopenia and Polycystic Kidney Disease",
abstract = "Conditional deletion of Pkd1 in osteoblasts using either Osteocalcin(Oc)-Cre or Dmp1-Cre results in defective osteoblast-mediated postnatal bone formation and osteopenia. Pkd1 is also expressed in undifferentiated mesenchyme that gives rise to the osteoblast lineage. To examine the effects of Pkd1 on prenatal osteoblast development, we crossed Pkd1flox/flox and Col1a1(3.6)-Cre mice, which has been used to achieve selective inactivation of Pkd1 earlier in the osteoblast lineage. Control Pkd1flox/flox and Pkd1flox/+, heterozygous Col1a1(3.6)-Cre;Pkd1flox/+ and Pkd1flox/null, and homozygous Col1a1(3.6)-Cre;Pkd1flox/flox and Col1a1(3.6)-Cre;Pkd1flox/null mice were analyzed at ages ranging from E14.5 to 8-weeks-old. Newborn Col1a1(3.6)-Cre;Pkd1flox/null mice exhibited defective skeletogenesis in association with a greater reduction in Pkd1 expression in bone. Conditional Col1a1(3.6)-Cre;Pkd1flox/+ and Col1a1(3.6)-Cre;Pkd1flox/flox mice displayed a gene dose-dependent decrease in bone formation and increase in marrow fat at 6 weeks of age. Bone marrow stromal cell and primary osteoblast cultures from homozygous Col1a1(3.6)-Cre;Pkd1flox/flox mice showed increased proliferation, impaired osteoblast development and enhanced adipogenesis ex vivo. Unexpectedly, we found evidence for Col1a1(3.6)-Cre mediated deletion of Pkd1 in extraskeletal tissues in Col1a1(3.6)-Cre;Pkd1flox/flox mice. Deletion of Pkd1 in mesenchymal precursors resulted in pancreatic and renal, but not hepatic, cyst formation. The non-lethality of Col1a1(3.6)-Cre;Pkd1flox/flox mice establishes a new model to study abnormalities in bone development and cyst formation in pancreas and kidney caused by Pkd1 gene inactivation.",
author = "Ni Qiu and Zhousheng Xiao and Li Cao and Valentin David and Leigh Quarles",
year = "2012",
month = "9",
day = "21",
doi = "10.1371/journal.pone.0046038",
language = "English (US)",
volume = "7",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "9",

}

TY - JOUR

T1 - Conditional Mesenchymal Disruption of Pkd1 Results in Osteopenia and Polycystic Kidney Disease

AU - Qiu, Ni

AU - Xiao, Zhousheng

AU - Cao, Li

AU - David, Valentin

AU - Quarles, Leigh

PY - 2012/9/21

Y1 - 2012/9/21

N2 - Conditional deletion of Pkd1 in osteoblasts using either Osteocalcin(Oc)-Cre or Dmp1-Cre results in defective osteoblast-mediated postnatal bone formation and osteopenia. Pkd1 is also expressed in undifferentiated mesenchyme that gives rise to the osteoblast lineage. To examine the effects of Pkd1 on prenatal osteoblast development, we crossed Pkd1flox/flox and Col1a1(3.6)-Cre mice, which has been used to achieve selective inactivation of Pkd1 earlier in the osteoblast lineage. Control Pkd1flox/flox and Pkd1flox/+, heterozygous Col1a1(3.6)-Cre;Pkd1flox/+ and Pkd1flox/null, and homozygous Col1a1(3.6)-Cre;Pkd1flox/flox and Col1a1(3.6)-Cre;Pkd1flox/null mice were analyzed at ages ranging from E14.5 to 8-weeks-old. Newborn Col1a1(3.6)-Cre;Pkd1flox/null mice exhibited defective skeletogenesis in association with a greater reduction in Pkd1 expression in bone. Conditional Col1a1(3.6)-Cre;Pkd1flox/+ and Col1a1(3.6)-Cre;Pkd1flox/flox mice displayed a gene dose-dependent decrease in bone formation and increase in marrow fat at 6 weeks of age. Bone marrow stromal cell and primary osteoblast cultures from homozygous Col1a1(3.6)-Cre;Pkd1flox/flox mice showed increased proliferation, impaired osteoblast development and enhanced adipogenesis ex vivo. Unexpectedly, we found evidence for Col1a1(3.6)-Cre mediated deletion of Pkd1 in extraskeletal tissues in Col1a1(3.6)-Cre;Pkd1flox/flox mice. Deletion of Pkd1 in mesenchymal precursors resulted in pancreatic and renal, but not hepatic, cyst formation. The non-lethality of Col1a1(3.6)-Cre;Pkd1flox/flox mice establishes a new model to study abnormalities in bone development and cyst formation in pancreas and kidney caused by Pkd1 gene inactivation.

AB - Conditional deletion of Pkd1 in osteoblasts using either Osteocalcin(Oc)-Cre or Dmp1-Cre results in defective osteoblast-mediated postnatal bone formation and osteopenia. Pkd1 is also expressed in undifferentiated mesenchyme that gives rise to the osteoblast lineage. To examine the effects of Pkd1 on prenatal osteoblast development, we crossed Pkd1flox/flox and Col1a1(3.6)-Cre mice, which has been used to achieve selective inactivation of Pkd1 earlier in the osteoblast lineage. Control Pkd1flox/flox and Pkd1flox/+, heterozygous Col1a1(3.6)-Cre;Pkd1flox/+ and Pkd1flox/null, and homozygous Col1a1(3.6)-Cre;Pkd1flox/flox and Col1a1(3.6)-Cre;Pkd1flox/null mice were analyzed at ages ranging from E14.5 to 8-weeks-old. Newborn Col1a1(3.6)-Cre;Pkd1flox/null mice exhibited defective skeletogenesis in association with a greater reduction in Pkd1 expression in bone. Conditional Col1a1(3.6)-Cre;Pkd1flox/+ and Col1a1(3.6)-Cre;Pkd1flox/flox mice displayed a gene dose-dependent decrease in bone formation and increase in marrow fat at 6 weeks of age. Bone marrow stromal cell and primary osteoblast cultures from homozygous Col1a1(3.6)-Cre;Pkd1flox/flox mice showed increased proliferation, impaired osteoblast development and enhanced adipogenesis ex vivo. Unexpectedly, we found evidence for Col1a1(3.6)-Cre mediated deletion of Pkd1 in extraskeletal tissues in Col1a1(3.6)-Cre;Pkd1flox/flox mice. Deletion of Pkd1 in mesenchymal precursors resulted in pancreatic and renal, but not hepatic, cyst formation. The non-lethality of Col1a1(3.6)-Cre;Pkd1flox/flox mice establishes a new model to study abnormalities in bone development and cyst formation in pancreas and kidney caused by Pkd1 gene inactivation.

UR - http://www.scopus.com/inward/record.url?scp=84866682070&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84866682070&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0046038

DO - 10.1371/journal.pone.0046038

M3 - Article

VL - 7

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 9

M1 - e46038

ER -