D2s dopamine receptor mediates phospholipase D and antiproliferation

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

The D2 dopamine receptor, short form (D2s) has been shown to stimulate phospholipase D (PLD) activity independent of activation of phospholipase C (PLC) activity in GH4 derived cells stably transfected with the D2s receptor [Mol. Pharm. 58 (2000) 455]. Agonist activation of D2s has been shown to mediate the inhibition of growth in the same cell line [J. Biol. Chem. 276 (1992) 24169; Endocrinology 134 (1994) 783]. In the present study, D2s-HEK 293 cells were generated using Epstein-Barr virus (EBV) based vectors. The stimulation of PLD by D2s can be augmented by the transfection of Rho A, but not Cdc 42 or Rac and nullified by transfection of N19 Rho A, a dominant negative form of Rho A. Addition of ethanol, at 0.5% reduced the ability of dopamine agonists to inhibit growth in D2s-HEK 293 cells, suggesting that PLD is involved in the antiproliferative effects of D2s signaling. In addition, the expression of N19 Rho A ablated the ability of the D2s to inhibit [ 3H]thymidine incorporation, while the expression of N19 Cdc 42 or N17 Rac had no effect. These results suggest that the D2s stimulation of PLD is Rho A dependent and lies along the signaling pathway which leads to the antiproliferative effects of D2s receptor activation.

Original languageEnglish (US)
Pages (from-to)61-69
Number of pages9
JournalMolecular and Cellular Endocrinology
Volume209
Issue number1-2
DOIs
StatePublished - Nov 14 2003

Fingerprint

Phospholipase D
Dopamine Receptors
HEK293 Cells
Chemical activation
Transfection
Endocrinology
Dopamine D2 Receptors
Dopamine Agonists
Type C Phospholipases
Growth
Human Herpesvirus 4
Viruses
Thymidine
Ethanol
Cells
Cell Line

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Endocrinology

Cite this

D2s dopamine receptor mediates phospholipase D and antiproliferation. / Senogles, Susan.

In: Molecular and Cellular Endocrinology, Vol. 209, No. 1-2, 14.11.2003, p. 61-69.

Research output: Contribution to journalArticle

@article{8314d855b6ef47dbbdbb7bdbcf424bd1,
title = "D2s dopamine receptor mediates phospholipase D and antiproliferation",
abstract = "The D2 dopamine receptor, short form (D2s) has been shown to stimulate phospholipase D (PLD) activity independent of activation of phospholipase C (PLC) activity in GH4 derived cells stably transfected with the D2s receptor [Mol. Pharm. 58 (2000) 455]. Agonist activation of D2s has been shown to mediate the inhibition of growth in the same cell line [J. Biol. Chem. 276 (1992) 24169; Endocrinology 134 (1994) 783]. In the present study, D2s-HEK 293 cells were generated using Epstein-Barr virus (EBV) based vectors. The stimulation of PLD by D2s can be augmented by the transfection of Rho A, but not Cdc 42 or Rac and nullified by transfection of N19 Rho A, a dominant negative form of Rho A. Addition of ethanol, at 0.5{\%} reduced the ability of dopamine agonists to inhibit growth in D2s-HEK 293 cells, suggesting that PLD is involved in the antiproliferative effects of D2s signaling. In addition, the expression of N19 Rho A ablated the ability of the D2s to inhibit [ 3H]thymidine incorporation, while the expression of N19 Cdc 42 or N17 Rac had no effect. These results suggest that the D2s stimulation of PLD is Rho A dependent and lies along the signaling pathway which leads to the antiproliferative effects of D2s receptor activation.",
author = "Susan Senogles",
year = "2003",
month = "11",
day = "14",
doi = "10.1016/j.mce.2003.07.001",
language = "English (US)",
volume = "209",
pages = "61--69",
journal = "Molecular and Cellular Endocrinology",
issn = "0303-7207",
publisher = "Elsevier Ireland Ltd",
number = "1-2",

}

TY - JOUR

T1 - D2s dopamine receptor mediates phospholipase D and antiproliferation

AU - Senogles, Susan

PY - 2003/11/14

Y1 - 2003/11/14

N2 - The D2 dopamine receptor, short form (D2s) has been shown to stimulate phospholipase D (PLD) activity independent of activation of phospholipase C (PLC) activity in GH4 derived cells stably transfected with the D2s receptor [Mol. Pharm. 58 (2000) 455]. Agonist activation of D2s has been shown to mediate the inhibition of growth in the same cell line [J. Biol. Chem. 276 (1992) 24169; Endocrinology 134 (1994) 783]. In the present study, D2s-HEK 293 cells were generated using Epstein-Barr virus (EBV) based vectors. The stimulation of PLD by D2s can be augmented by the transfection of Rho A, but not Cdc 42 or Rac and nullified by transfection of N19 Rho A, a dominant negative form of Rho A. Addition of ethanol, at 0.5% reduced the ability of dopamine agonists to inhibit growth in D2s-HEK 293 cells, suggesting that PLD is involved in the antiproliferative effects of D2s signaling. In addition, the expression of N19 Rho A ablated the ability of the D2s to inhibit [ 3H]thymidine incorporation, while the expression of N19 Cdc 42 or N17 Rac had no effect. These results suggest that the D2s stimulation of PLD is Rho A dependent and lies along the signaling pathway which leads to the antiproliferative effects of D2s receptor activation.

AB - The D2 dopamine receptor, short form (D2s) has been shown to stimulate phospholipase D (PLD) activity independent of activation of phospholipase C (PLC) activity in GH4 derived cells stably transfected with the D2s receptor [Mol. Pharm. 58 (2000) 455]. Agonist activation of D2s has been shown to mediate the inhibition of growth in the same cell line [J. Biol. Chem. 276 (1992) 24169; Endocrinology 134 (1994) 783]. In the present study, D2s-HEK 293 cells were generated using Epstein-Barr virus (EBV) based vectors. The stimulation of PLD by D2s can be augmented by the transfection of Rho A, but not Cdc 42 or Rac and nullified by transfection of N19 Rho A, a dominant negative form of Rho A. Addition of ethanol, at 0.5% reduced the ability of dopamine agonists to inhibit growth in D2s-HEK 293 cells, suggesting that PLD is involved in the antiproliferative effects of D2s signaling. In addition, the expression of N19 Rho A ablated the ability of the D2s to inhibit [ 3H]thymidine incorporation, while the expression of N19 Cdc 42 or N17 Rac had no effect. These results suggest that the D2s stimulation of PLD is Rho A dependent and lies along the signaling pathway which leads to the antiproliferative effects of D2s receptor activation.

UR - http://www.scopus.com/inward/record.url?scp=0242329749&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0242329749&partnerID=8YFLogxK

U2 - 10.1016/j.mce.2003.07.001

DO - 10.1016/j.mce.2003.07.001

M3 - Article

VL - 209

SP - 61

EP - 69

JO - Molecular and Cellular Endocrinology

JF - Molecular and Cellular Endocrinology

SN - 0303-7207

IS - 1-2

ER -