Effect of length and cross-bridge attachment on Ca2+ binding to cardiac troponin C

Polly Hofmann, F. Fuchs

Research output: Contribution to journalArticle

102 Citations (Scopus)

Abstract

The sensitivity of skinned cardiac muscle bundles to Ca2+ is a function of sarcomere length. Ca2+ sensitivity is increased as fiber length is extended along the ascending limb of the force-length curve and it has been suggested that this phenomenon makes a major contribution to the steep force-length relationship that exists in living cardiac muscle. To gain greater insight into the mechanism behind the length dependence of Ca2+ sensitivity isotopic measurements of Ca2+ binding to detergent-extracted bovine, ventricular muscle bundles were made under conditions in which troponin C was the only major Ca2+ binding species. Experiments were designed to determine whether 1) Ca2+-troponin C affinity varies in the sarcomere length range corresponding to the ascending limb of the force-length curve, and 2) Ca2+ binding correlates with length per se or with changes in the number of length-dependent cross-bridge attachments. Measurements were made of Ca2+ binding in the rigor and relaxed states. The latter state was produced by suppressing actin-myosin interaction with the phosphate analogue, sodium vanadate. After vanadate treatment it is possible to obtain a complete Ca2+ saturation curve in the presence of physiological MgATP concentrations and at constant sarcomere length. The results show that the binding of Ca2+ to the regulatory site of cardiac troponin C is length dependent but this length dependence is actually a dependence on the number of attached cross bridges.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Cell Physiology
Volume253
Issue number1
StatePublished - 1987
Externally publishedYes

Fingerprint

Troponin C
Sarcomeres
Muscle
Vanadates
Myocardium
Extremities
Myosins
Detergents
Actins
Adenosine Triphosphate
Phosphates
Muscles
Fibers
Experiments

All Science Journal Classification (ASJC) codes

  • Cell Biology
  • Clinical Biochemistry
  • Physiology

Cite this

@article{f4b49236b18b473da1e182795cffc632,
title = "Effect of length and cross-bridge attachment on Ca2+ binding to cardiac troponin C",
abstract = "The sensitivity of skinned cardiac muscle bundles to Ca2+ is a function of sarcomere length. Ca2+ sensitivity is increased as fiber length is extended along the ascending limb of the force-length curve and it has been suggested that this phenomenon makes a major contribution to the steep force-length relationship that exists in living cardiac muscle. To gain greater insight into the mechanism behind the length dependence of Ca2+ sensitivity isotopic measurements of Ca2+ binding to detergent-extracted bovine, ventricular muscle bundles were made under conditions in which troponin C was the only major Ca2+ binding species. Experiments were designed to determine whether 1) Ca2+-troponin C affinity varies in the sarcomere length range corresponding to the ascending limb of the force-length curve, and 2) Ca2+ binding correlates with length per se or with changes in the number of length-dependent cross-bridge attachments. Measurements were made of Ca2+ binding in the rigor and relaxed states. The latter state was produced by suppressing actin-myosin interaction with the phosphate analogue, sodium vanadate. After vanadate treatment it is possible to obtain a complete Ca2+ saturation curve in the presence of physiological MgATP concentrations and at constant sarcomere length. The results show that the binding of Ca2+ to the regulatory site of cardiac troponin C is length dependent but this length dependence is actually a dependence on the number of attached cross bridges.",
author = "Polly Hofmann and F. Fuchs",
year = "1987",
language = "English (US)",
volume = "253",
journal = "American Journal of Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - Effect of length and cross-bridge attachment on Ca2+ binding to cardiac troponin C

AU - Hofmann, Polly

AU - Fuchs, F.

PY - 1987

Y1 - 1987

N2 - The sensitivity of skinned cardiac muscle bundles to Ca2+ is a function of sarcomere length. Ca2+ sensitivity is increased as fiber length is extended along the ascending limb of the force-length curve and it has been suggested that this phenomenon makes a major contribution to the steep force-length relationship that exists in living cardiac muscle. To gain greater insight into the mechanism behind the length dependence of Ca2+ sensitivity isotopic measurements of Ca2+ binding to detergent-extracted bovine, ventricular muscle bundles were made under conditions in which troponin C was the only major Ca2+ binding species. Experiments were designed to determine whether 1) Ca2+-troponin C affinity varies in the sarcomere length range corresponding to the ascending limb of the force-length curve, and 2) Ca2+ binding correlates with length per se or with changes in the number of length-dependent cross-bridge attachments. Measurements were made of Ca2+ binding in the rigor and relaxed states. The latter state was produced by suppressing actin-myosin interaction with the phosphate analogue, sodium vanadate. After vanadate treatment it is possible to obtain a complete Ca2+ saturation curve in the presence of physiological MgATP concentrations and at constant sarcomere length. The results show that the binding of Ca2+ to the regulatory site of cardiac troponin C is length dependent but this length dependence is actually a dependence on the number of attached cross bridges.

AB - The sensitivity of skinned cardiac muscle bundles to Ca2+ is a function of sarcomere length. Ca2+ sensitivity is increased as fiber length is extended along the ascending limb of the force-length curve and it has been suggested that this phenomenon makes a major contribution to the steep force-length relationship that exists in living cardiac muscle. To gain greater insight into the mechanism behind the length dependence of Ca2+ sensitivity isotopic measurements of Ca2+ binding to detergent-extracted bovine, ventricular muscle bundles were made under conditions in which troponin C was the only major Ca2+ binding species. Experiments were designed to determine whether 1) Ca2+-troponin C affinity varies in the sarcomere length range corresponding to the ascending limb of the force-length curve, and 2) Ca2+ binding correlates with length per se or with changes in the number of length-dependent cross-bridge attachments. Measurements were made of Ca2+ binding in the rigor and relaxed states. The latter state was produced by suppressing actin-myosin interaction with the phosphate analogue, sodium vanadate. After vanadate treatment it is possible to obtain a complete Ca2+ saturation curve in the presence of physiological MgATP concentrations and at constant sarcomere length. The results show that the binding of Ca2+ to the regulatory site of cardiac troponin C is length dependent but this length dependence is actually a dependence on the number of attached cross bridges.

UR - http://www.scopus.com/inward/record.url?scp=0023212285&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023212285&partnerID=8YFLogxK

M3 - Article

C2 - 2955701

AN - SCOPUS:0023212285

VL - 253

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 1931-857X

IS - 1

ER -