Effect of methamphetamine on spectral binding, ligand docking and metabolism of anti-HIV drugs with CYP3A4

Anantha R. Nookala, Junhao Li, Anusha Ande, Lei Wang, Naveen K. Vaidya, Weihua Li, Santosh Kumar, Anil Kumar

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 ìM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 ìM) levels.We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir-boosted antiretroviral therapy, in HIV-1-infected individuals who abuse methamphetamine.

Original languageEnglish (US)
Article numbere0146529
JournalPloS one
Volume11
Issue number1
DOIs
StatePublished - Jan 7 2016

Fingerprint

Anti-HIV Agents
Cytochrome P-450 CYP3A
Methamphetamine
cytochrome P-450
Metabolism
Ligands
drugs
proteinase inhibitors
metabolism
Ritonavir
Protease Inhibitors
Nelfinavir
Lopinavir
Indinavir
ligands
liver microsomes
heme
Human immunodeficiency virus 1
Pharmaceutical Preparations
drug therapy

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Nookala, A. R., Li, J., Ande, A., Wang, L., Vaidya, N. K., Li, W., ... Kumar, A. (2016). Effect of methamphetamine on spectral binding, ligand docking and metabolism of anti-HIV drugs with CYP3A4. PloS one, 11(1), [e0146529]. https://doi.org/10.1371/journal.pone.0146529

Effect of methamphetamine on spectral binding, ligand docking and metabolism of anti-HIV drugs with CYP3A4. / Nookala, Anantha R.; Li, Junhao; Ande, Anusha; Wang, Lei; Vaidya, Naveen K.; Li, Weihua; Kumar, Santosh; Kumar, Anil.

In: PloS one, Vol. 11, No. 1, e0146529, 07.01.2016.

Research output: Contribution to journalArticle

Nookala, Anantha R. ; Li, Junhao ; Ande, Anusha ; Wang, Lei ; Vaidya, Naveen K. ; Li, Weihua ; Kumar, Santosh ; Kumar, Anil. / Effect of methamphetamine on spectral binding, ligand docking and metabolism of anti-HIV drugs with CYP3A4. In: PloS one. 2016 ; Vol. 11, No. 1.
@article{58f9c15295054c57a2175c3e0a05fa9f,
title = "Effect of methamphetamine on spectral binding, ligand docking and metabolism of anti-HIV drugs with CYP3A4",
abstract = "Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 {\`i}M, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 {\`i}M) levels.We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir-boosted antiretroviral therapy, in HIV-1-infected individuals who abuse methamphetamine.",
author = "Nookala, {Anantha R.} and Junhao Li and Anusha Ande and Lei Wang and Vaidya, {Naveen K.} and Weihua Li and Santosh Kumar and Anil Kumar",
year = "2016",
month = "1",
day = "7",
doi = "10.1371/journal.pone.0146529",
language = "English (US)",
volume = "11",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "1",

}

TY - JOUR

T1 - Effect of methamphetamine on spectral binding, ligand docking and metabolism of anti-HIV drugs with CYP3A4

AU - Nookala, Anantha R.

AU - Li, Junhao

AU - Ande, Anusha

AU - Wang, Lei

AU - Vaidya, Naveen K.

AU - Li, Weihua

AU - Kumar, Santosh

AU - Kumar, Anil

PY - 2016/1/7

Y1 - 2016/1/7

N2 - Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 ìM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 ìM) levels.We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir-boosted antiretroviral therapy, in HIV-1-infected individuals who abuse methamphetamine.

AB - Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 ìM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 ìM) levels.We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir-boosted antiretroviral therapy, in HIV-1-infected individuals who abuse methamphetamine.

UR - http://www.scopus.com/inward/record.url?scp=84954149595&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84954149595&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0146529

DO - 10.1371/journal.pone.0146529

M3 - Article

VL - 11

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 1

M1 - e0146529

ER -