Electrophysiological differences between oxytocin and vasopressin neurones recorded from female rats in vitro.

J. E. Stern, William Armstrong

Research output: Contribution to journalArticle

79 Citations (Scopus)

Abstract

1. Intracellular recordings in vitro from immunochemically identified oxytocin (OT) and vasopressin (VP) neurones in the supraoptic nucleus (SON) of virgin or lactating female rats revealed no differences between neurone types in membrane potential (Vm), input resistance and current‐voltage relationships (I‐V), when taken at resting membrane potentials. 2. When OT (94%), but not VP, neurones (93%) were current clamped at depolarized voltages (above ‐50 mV), small hyperpolarizing pulses revealed a time‐ and voltage‐dependent outward rectification that was present above ‐75 mV and that decreased in amplitude as Vm approached the equilibrium potential for potassium (EK). The rectification was more pronounced when the neurones were held at a more depolarized membrane potential, and was larger the longer the neurone was held depolarized, reaching a maximum at 0.6‐0.9 s. 3. A rebound depolarization followed the offset of hyperpolarizing pulses that were associated with the rectification. The peak amplitude of the rebound showed a time and a voltage dependence. It followed a bell‐shaped curve as the hyperpolarizing commands were made larger, attaining a peak at ‐65 +/‐ 1.5 mV. The rebound amplitude increased with pulse duration, achieving a half‐maximal amplitude at 0.5 +/‐ 0.1 s. 4. The expression of the sustained outward rectification and the rebound in OT neurones was similar in virgin and lactating female rats. 5. These results indicate the presence of significant differences in the intrinsic membrane properties, probably K+ currents, between OT and VP neurones in both lactating and virgin female rats.

Original languageEnglish (US)
Pages (from-to)701-708
Number of pages8
JournalThe Journal of Physiology
Volume488
Issue number3
DOIs
StatePublished - Nov 1 1995

Fingerprint

Oxytocin
Vasopressins
Neurons
Membrane Potentials
Supraoptic Nucleus
In Vitro Techniques
Potassium
Membranes

All Science Journal Classification (ASJC) codes

  • Physiology

Cite this

Electrophysiological differences between oxytocin and vasopressin neurones recorded from female rats in vitro. / Stern, J. E.; Armstrong, William.

In: The Journal of Physiology, Vol. 488, No. 3, 01.11.1995, p. 701-708.

Research output: Contribution to journalArticle

@article{2ee2a53eafb84481be82f5f6b5e0c58b,
title = "Electrophysiological differences between oxytocin and vasopressin neurones recorded from female rats in vitro.",
abstract = "1. Intracellular recordings in vitro from immunochemically identified oxytocin (OT) and vasopressin (VP) neurones in the supraoptic nucleus (SON) of virgin or lactating female rats revealed no differences between neurone types in membrane potential (Vm), input resistance and current‐voltage relationships (I‐V), when taken at resting membrane potentials. 2. When OT (94{\%}), but not VP, neurones (93{\%}) were current clamped at depolarized voltages (above ‐50 mV), small hyperpolarizing pulses revealed a time‐ and voltage‐dependent outward rectification that was present above ‐75 mV and that decreased in amplitude as Vm approached the equilibrium potential for potassium (EK). The rectification was more pronounced when the neurones were held at a more depolarized membrane potential, and was larger the longer the neurone was held depolarized, reaching a maximum at 0.6‐0.9 s. 3. A rebound depolarization followed the offset of hyperpolarizing pulses that were associated with the rectification. The peak amplitude of the rebound showed a time and a voltage dependence. It followed a bell‐shaped curve as the hyperpolarizing commands were made larger, attaining a peak at ‐65 +/‐ 1.5 mV. The rebound amplitude increased with pulse duration, achieving a half‐maximal amplitude at 0.5 +/‐ 0.1 s. 4. The expression of the sustained outward rectification and the rebound in OT neurones was similar in virgin and lactating female rats. 5. These results indicate the presence of significant differences in the intrinsic membrane properties, probably K+ currents, between OT and VP neurones in both lactating and virgin female rats.",
author = "Stern, {J. E.} and William Armstrong",
year = "1995",
month = "11",
day = "1",
doi = "10.1113/jphysiol.1995.sp021001",
language = "English (US)",
volume = "488",
pages = "701--708",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "3",

}

TY - JOUR

T1 - Electrophysiological differences between oxytocin and vasopressin neurones recorded from female rats in vitro.

AU - Stern, J. E.

AU - Armstrong, William

PY - 1995/11/1

Y1 - 1995/11/1

N2 - 1. Intracellular recordings in vitro from immunochemically identified oxytocin (OT) and vasopressin (VP) neurones in the supraoptic nucleus (SON) of virgin or lactating female rats revealed no differences between neurone types in membrane potential (Vm), input resistance and current‐voltage relationships (I‐V), when taken at resting membrane potentials. 2. When OT (94%), but not VP, neurones (93%) were current clamped at depolarized voltages (above ‐50 mV), small hyperpolarizing pulses revealed a time‐ and voltage‐dependent outward rectification that was present above ‐75 mV and that decreased in amplitude as Vm approached the equilibrium potential for potassium (EK). The rectification was more pronounced when the neurones were held at a more depolarized membrane potential, and was larger the longer the neurone was held depolarized, reaching a maximum at 0.6‐0.9 s. 3. A rebound depolarization followed the offset of hyperpolarizing pulses that were associated with the rectification. The peak amplitude of the rebound showed a time and a voltage dependence. It followed a bell‐shaped curve as the hyperpolarizing commands were made larger, attaining a peak at ‐65 +/‐ 1.5 mV. The rebound amplitude increased with pulse duration, achieving a half‐maximal amplitude at 0.5 +/‐ 0.1 s. 4. The expression of the sustained outward rectification and the rebound in OT neurones was similar in virgin and lactating female rats. 5. These results indicate the presence of significant differences in the intrinsic membrane properties, probably K+ currents, between OT and VP neurones in both lactating and virgin female rats.

AB - 1. Intracellular recordings in vitro from immunochemically identified oxytocin (OT) and vasopressin (VP) neurones in the supraoptic nucleus (SON) of virgin or lactating female rats revealed no differences between neurone types in membrane potential (Vm), input resistance and current‐voltage relationships (I‐V), when taken at resting membrane potentials. 2. When OT (94%), but not VP, neurones (93%) were current clamped at depolarized voltages (above ‐50 mV), small hyperpolarizing pulses revealed a time‐ and voltage‐dependent outward rectification that was present above ‐75 mV and that decreased in amplitude as Vm approached the equilibrium potential for potassium (EK). The rectification was more pronounced when the neurones were held at a more depolarized membrane potential, and was larger the longer the neurone was held depolarized, reaching a maximum at 0.6‐0.9 s. 3. A rebound depolarization followed the offset of hyperpolarizing pulses that were associated with the rectification. The peak amplitude of the rebound showed a time and a voltage dependence. It followed a bell‐shaped curve as the hyperpolarizing commands were made larger, attaining a peak at ‐65 +/‐ 1.5 mV. The rebound amplitude increased with pulse duration, achieving a half‐maximal amplitude at 0.5 +/‐ 0.1 s. 4. The expression of the sustained outward rectification and the rebound in OT neurones was similar in virgin and lactating female rats. 5. These results indicate the presence of significant differences in the intrinsic membrane properties, probably K+ currents, between OT and VP neurones in both lactating and virgin female rats.

UR - http://www.scopus.com/inward/record.url?scp=0028871512&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028871512&partnerID=8YFLogxK

U2 - 10.1113/jphysiol.1995.sp021001

DO - 10.1113/jphysiol.1995.sp021001

M3 - Article

VL - 488

SP - 701

EP - 708

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 3

ER -