Endothelial connexin43 mediates acid-induced increases in pulmonary microvascular permeability

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Acid aspiration, a common cause of acute lung injury, leads to alveolar edema. Increase in lung vascular permeability underlies this pathology. To define mechanisms, isolated rat lungs were perfused with autologous blood. Hydrochloric acid and rhodamine-dextran 70 kDa (RDx70) were coinstilled into an alveolus by micropuncture. RDx70 fluorescence was used to establish the spatial distribution of acid. Subsequently, FITCdextran 20 kDa (FDx20) was infused into microvessels for 60 min followed by a 10-min HEPES-buffered saline wash. During the infusion, FITC fluorescence changes were recorded to quantify the ratio of peak to postwash fluorescence. The ratio, termed normalized fluorescence, was low for acid compared with buffer instillation both in microvessels abutting acid-treated alveoli and those located more than 700 m away. In contrast, the normalized fluorescence was similar to buffer controls when a higher molecular weight tracer (FITC-dextran 70 kDa) was infused instead of FDx20, suggesting that normalized FDx20 fluorescence faithfully represented microvascular permeability. Inhibiting endothelial connexin43 (Cx43) gap junction communication with Gap27 blunted the acid-induced reduction in normalized fluorescence, although scrambled Gap27 did not have any effect. The blunting was evident not only in microvessels away from the site of injury, but also in those abutting directly injured alveoli. Thus the new fluorescence-based method reveals that acid increases microvascular permeability both at acid-instilled and away sites. Inhibiting endothelial Cx43 blocked the permeability increase even at the direct injury sites. These data indicate for the first time that Cx43-dependent mechanisms mediate acid-induced increases in microvascular permeability. Cx43 may be a therapeutic target in acid injury.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Volume303
Issue number1
DOIs
StatePublished - Jul 1 2012

Fingerprint

Connexin 43
Capillary Permeability
Fluorescence
Lung
Acids
Microvessels
Dextrans
Buffers
Wounds and Injuries
HEPES
Hydrochloric Acid
Fluorescein-5-isothiocyanate
Acute Lung Injury
Gap Junctions
Punctures
Permeability
Edema
Molecular Weight
Communication
Pathology

All Science Journal Classification (ASJC) codes

  • Physiology
  • Pulmonary and Respiratory Medicine
  • Physiology (medical)
  • Cell Biology

Cite this

@article{92e251a6e8e3428e8e434f9ee162edfa,
title = "Endothelial connexin43 mediates acid-induced increases in pulmonary microvascular permeability",
abstract = "Acid aspiration, a common cause of acute lung injury, leads to alveolar edema. Increase in lung vascular permeability underlies this pathology. To define mechanisms, isolated rat lungs were perfused with autologous blood. Hydrochloric acid and rhodamine-dextran 70 kDa (RDx70) were coinstilled into an alveolus by micropuncture. RDx70 fluorescence was used to establish the spatial distribution of acid. Subsequently, FITCdextran 20 kDa (FDx20) was infused into microvessels for 60 min followed by a 10-min HEPES-buffered saline wash. During the infusion, FITC fluorescence changes were recorded to quantify the ratio of peak to postwash fluorescence. The ratio, termed normalized fluorescence, was low for acid compared with buffer instillation both in microvessels abutting acid-treated alveoli and those located more than 700 m away. In contrast, the normalized fluorescence was similar to buffer controls when a higher molecular weight tracer (FITC-dextran 70 kDa) was infused instead of FDx20, suggesting that normalized FDx20 fluorescence faithfully represented microvascular permeability. Inhibiting endothelial connexin43 (Cx43) gap junction communication with Gap27 blunted the acid-induced reduction in normalized fluorescence, although scrambled Gap27 did not have any effect. The blunting was evident not only in microvessels away from the site of injury, but also in those abutting directly injured alveoli. Thus the new fluorescence-based method reveals that acid increases microvascular permeability both at acid-instilled and away sites. Inhibiting endothelial Cx43 blocked the permeability increase even at the direct injury sites. These data indicate for the first time that Cx43-dependent mechanisms mediate acid-induced increases in microvascular permeability. Cx43 may be a therapeutic target in acid injury.",
author = "Kaushik Parthasarathi",
year = "2012",
month = "7",
day = "1",
doi = "10.1152/ajplung.00219.2011",
language = "English (US)",
volume = "303",
journal = "American Journal of Physiology - Lung Cellular and Molecular Physiology",
issn = "1040-0605",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - Endothelial connexin43 mediates acid-induced increases in pulmonary microvascular permeability

AU - Parthasarathi, Kaushik

PY - 2012/7/1

Y1 - 2012/7/1

N2 - Acid aspiration, a common cause of acute lung injury, leads to alveolar edema. Increase in lung vascular permeability underlies this pathology. To define mechanisms, isolated rat lungs were perfused with autologous blood. Hydrochloric acid and rhodamine-dextran 70 kDa (RDx70) were coinstilled into an alveolus by micropuncture. RDx70 fluorescence was used to establish the spatial distribution of acid. Subsequently, FITCdextran 20 kDa (FDx20) was infused into microvessels for 60 min followed by a 10-min HEPES-buffered saline wash. During the infusion, FITC fluorescence changes were recorded to quantify the ratio of peak to postwash fluorescence. The ratio, termed normalized fluorescence, was low for acid compared with buffer instillation both in microvessels abutting acid-treated alveoli and those located more than 700 m away. In contrast, the normalized fluorescence was similar to buffer controls when a higher molecular weight tracer (FITC-dextran 70 kDa) was infused instead of FDx20, suggesting that normalized FDx20 fluorescence faithfully represented microvascular permeability. Inhibiting endothelial connexin43 (Cx43) gap junction communication with Gap27 blunted the acid-induced reduction in normalized fluorescence, although scrambled Gap27 did not have any effect. The blunting was evident not only in microvessels away from the site of injury, but also in those abutting directly injured alveoli. Thus the new fluorescence-based method reveals that acid increases microvascular permeability both at acid-instilled and away sites. Inhibiting endothelial Cx43 blocked the permeability increase even at the direct injury sites. These data indicate for the first time that Cx43-dependent mechanisms mediate acid-induced increases in microvascular permeability. Cx43 may be a therapeutic target in acid injury.

AB - Acid aspiration, a common cause of acute lung injury, leads to alveolar edema. Increase in lung vascular permeability underlies this pathology. To define mechanisms, isolated rat lungs were perfused with autologous blood. Hydrochloric acid and rhodamine-dextran 70 kDa (RDx70) were coinstilled into an alveolus by micropuncture. RDx70 fluorescence was used to establish the spatial distribution of acid. Subsequently, FITCdextran 20 kDa (FDx20) was infused into microvessels for 60 min followed by a 10-min HEPES-buffered saline wash. During the infusion, FITC fluorescence changes were recorded to quantify the ratio of peak to postwash fluorescence. The ratio, termed normalized fluorescence, was low for acid compared with buffer instillation both in microvessels abutting acid-treated alveoli and those located more than 700 m away. In contrast, the normalized fluorescence was similar to buffer controls when a higher molecular weight tracer (FITC-dextran 70 kDa) was infused instead of FDx20, suggesting that normalized FDx20 fluorescence faithfully represented microvascular permeability. Inhibiting endothelial connexin43 (Cx43) gap junction communication with Gap27 blunted the acid-induced reduction in normalized fluorescence, although scrambled Gap27 did not have any effect. The blunting was evident not only in microvessels away from the site of injury, but also in those abutting directly injured alveoli. Thus the new fluorescence-based method reveals that acid increases microvascular permeability both at acid-instilled and away sites. Inhibiting endothelial Cx43 blocked the permeability increase even at the direct injury sites. These data indicate for the first time that Cx43-dependent mechanisms mediate acid-induced increases in microvascular permeability. Cx43 may be a therapeutic target in acid injury.

UR - http://www.scopus.com/inward/record.url?scp=84863469630&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863469630&partnerID=8YFLogxK

U2 - 10.1152/ajplung.00219.2011

DO - 10.1152/ajplung.00219.2011

M3 - Article

VL - 303

JO - American Journal of Physiology - Lung Cellular and Molecular Physiology

JF - American Journal of Physiology - Lung Cellular and Molecular Physiology

SN - 1040-0605

IS - 1

ER -