Featured Article

Deterioration of visual function mediated by senescence-associated endoplasmic reticulum stress in inflammatory tie2-TNF mice

Raji Lenin, Peter G. Nagy, Jordy Gentry, Raja Shekhar Gangaraju

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Stress-associated premature senescence plays a major role in retinal diseases. In this study, we investigated the relationship between endothelial dysfunction, endoplasmic reticulum (ER) stress, and cellular senescence in the development of retinal dysfunction. We tested the hypothesis that constant endothelial activation by transmembrane tumor necrosis factor-α (tmTNF-α) exacerbates age-induced visual deficits via senescence-mediated ER stress in this model. To address this, we employed a mouse model of chronic vascular activation using endothelial-specific TNF-α-expressing (tie2-TNF) mice at 5 and 10 months of age. Visual deficits were exhibited by tie2-TNF mice at both 5 months and 10 months of age, with the older mice showing statistically significant loss of visual acuity compared with tie2-TNF mice at age 5 months. The neural defects, as measured by electroretinogram (ERG), also followed a similar trend in an age-dependent fashion, with 10-month-old tie2-TNF mice showing the greatest decrease in “b” wave amplitude at 25 cd.s.m 2 compared with age-matched wildtype (WT) mice and five-month-old tie2-TNF mice. While gene and protein expression from the whole retinal extracts demonstrated increased inflammatory (Icam1, Ccl2), stress-associated premature senescence (p16, p21, p53), and ER stress (Grp78, p-Ire1α, Chop) markers in five-month-old tie2-TNF mice compared with five-month-old WT mice, a further increase was seen in 10-month-old tie2-TNF mice. Our data demonstrate that tie2-TNF mice exhibit age-associated increases in visual deficits, and these data suggest that inflammatory endothelial activation is at least partly at play. Given the correlation of increased premature senescence and ER stress in an age-dependent fashion, with the loss of visual functions and increased endothelial activation, our data suggest a possible self-enhanced loop of unfolded protein response pathways and senescence in propagating neurovascular defects in this model. Impact statement: Vision loss in most retinal diseases affects the quality of life of working age adults. Using a novel animal model that displays constant endothelial activation by tmTNF-α, our results demonstrate exacerbated age-induced visual deficits via premature senescence-mediated ER stress. We have compared mice of 5 and 10 months of age, with highly relevant human equivalencies of approximately 35- and 50-year-old patients, representing mature adult and middle-aged subjects, respectively. Our studies suggest a possible role for a self-enhanced loop of ER stress pathways and senescence in the propagation of retinal neurovascular defects, under conditions of constant endothelial activation induced by tmTNF-α signaling.

Original languageEnglish (US)
Pages (from-to)976-984
Number of pages9
JournalExperimental Biology and Medicine
Volume243
Issue number12
DOIs
StatePublished - Aug 1 2018

Fingerprint

Endoplasmic Reticulum Stress
Deterioration
Chemical activation
Tumor Necrosis Factor-alpha
Defects
Retinal Diseases
Animals
Proteins
Unfolded Protein Response
Cell Aging
Visual Acuity
Blood Vessels

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

Featured Article : Deterioration of visual function mediated by senescence-associated endoplasmic reticulum stress in inflammatory tie2-TNF mice. / Lenin, Raji; Nagy, Peter G.; Gentry, Jordy; Gangaraju, Raja Shekhar.

In: Experimental Biology and Medicine, Vol. 243, No. 12, 01.08.2018, p. 976-984.

Research output: Contribution to journalArticle

@article{e3cd7b1aab0046169e76f6101f72d2c4,
title = "Featured Article: Deterioration of visual function mediated by senescence-associated endoplasmic reticulum stress in inflammatory tie2-TNF mice",
abstract = "Stress-associated premature senescence plays a major role in retinal diseases. In this study, we investigated the relationship between endothelial dysfunction, endoplasmic reticulum (ER) stress, and cellular senescence in the development of retinal dysfunction. We tested the hypothesis that constant endothelial activation by transmembrane tumor necrosis factor-α (tmTNF-α) exacerbates age-induced visual deficits via senescence-mediated ER stress in this model. To address this, we employed a mouse model of chronic vascular activation using endothelial-specific TNF-α-expressing (tie2-TNF) mice at 5 and 10 months of age. Visual deficits were exhibited by tie2-TNF mice at both 5 months and 10 months of age, with the older mice showing statistically significant loss of visual acuity compared with tie2-TNF mice at age 5 months. The neural defects, as measured by electroretinogram (ERG), also followed a similar trend in an age-dependent fashion, with 10-month-old tie2-TNF mice showing the greatest decrease in “b” wave amplitude at 25 cd.s.m 2 compared with age-matched wildtype (WT) mice and five-month-old tie2-TNF mice. While gene and protein expression from the whole retinal extracts demonstrated increased inflammatory (Icam1, Ccl2), stress-associated premature senescence (p16, p21, p53), and ER stress (Grp78, p-Ire1α, Chop) markers in five-month-old tie2-TNF mice compared with five-month-old WT mice, a further increase was seen in 10-month-old tie2-TNF mice. Our data demonstrate that tie2-TNF mice exhibit age-associated increases in visual deficits, and these data suggest that inflammatory endothelial activation is at least partly at play. Given the correlation of increased premature senescence and ER stress in an age-dependent fashion, with the loss of visual functions and increased endothelial activation, our data suggest a possible self-enhanced loop of unfolded protein response pathways and senescence in propagating neurovascular defects in this model. Impact statement: Vision loss in most retinal diseases affects the quality of life of working age adults. Using a novel animal model that displays constant endothelial activation by tmTNF-α, our results demonstrate exacerbated age-induced visual deficits via premature senescence-mediated ER stress. We have compared mice of 5 and 10 months of age, with highly relevant human equivalencies of approximately 35- and 50-year-old patients, representing mature adult and middle-aged subjects, respectively. Our studies suggest a possible role for a self-enhanced loop of ER stress pathways and senescence in the propagation of retinal neurovascular defects, under conditions of constant endothelial activation induced by tmTNF-α signaling.",
author = "Raji Lenin and Nagy, {Peter G.} and Jordy Gentry and Gangaraju, {Raja Shekhar}",
year = "2018",
month = "8",
day = "1",
doi = "10.1177/1535370218794915",
language = "English (US)",
volume = "243",
pages = "976--984",
journal = "Experimental Biology and Medicine",
issn = "1535-3702",
publisher = "SAGE Publications Ltd",
number = "12",

}

TY - JOUR

T1 - Featured Article

T2 - Deterioration of visual function mediated by senescence-associated endoplasmic reticulum stress in inflammatory tie2-TNF mice

AU - Lenin, Raji

AU - Nagy, Peter G.

AU - Gentry, Jordy

AU - Gangaraju, Raja Shekhar

PY - 2018/8/1

Y1 - 2018/8/1

N2 - Stress-associated premature senescence plays a major role in retinal diseases. In this study, we investigated the relationship between endothelial dysfunction, endoplasmic reticulum (ER) stress, and cellular senescence in the development of retinal dysfunction. We tested the hypothesis that constant endothelial activation by transmembrane tumor necrosis factor-α (tmTNF-α) exacerbates age-induced visual deficits via senescence-mediated ER stress in this model. To address this, we employed a mouse model of chronic vascular activation using endothelial-specific TNF-α-expressing (tie2-TNF) mice at 5 and 10 months of age. Visual deficits were exhibited by tie2-TNF mice at both 5 months and 10 months of age, with the older mice showing statistically significant loss of visual acuity compared with tie2-TNF mice at age 5 months. The neural defects, as measured by electroretinogram (ERG), also followed a similar trend in an age-dependent fashion, with 10-month-old tie2-TNF mice showing the greatest decrease in “b” wave amplitude at 25 cd.s.m 2 compared with age-matched wildtype (WT) mice and five-month-old tie2-TNF mice. While gene and protein expression from the whole retinal extracts demonstrated increased inflammatory (Icam1, Ccl2), stress-associated premature senescence (p16, p21, p53), and ER stress (Grp78, p-Ire1α, Chop) markers in five-month-old tie2-TNF mice compared with five-month-old WT mice, a further increase was seen in 10-month-old tie2-TNF mice. Our data demonstrate that tie2-TNF mice exhibit age-associated increases in visual deficits, and these data suggest that inflammatory endothelial activation is at least partly at play. Given the correlation of increased premature senescence and ER stress in an age-dependent fashion, with the loss of visual functions and increased endothelial activation, our data suggest a possible self-enhanced loop of unfolded protein response pathways and senescence in propagating neurovascular defects in this model. Impact statement: Vision loss in most retinal diseases affects the quality of life of working age adults. Using a novel animal model that displays constant endothelial activation by tmTNF-α, our results demonstrate exacerbated age-induced visual deficits via premature senescence-mediated ER stress. We have compared mice of 5 and 10 months of age, with highly relevant human equivalencies of approximately 35- and 50-year-old patients, representing mature adult and middle-aged subjects, respectively. Our studies suggest a possible role for a self-enhanced loop of ER stress pathways and senescence in the propagation of retinal neurovascular defects, under conditions of constant endothelial activation induced by tmTNF-α signaling.

AB - Stress-associated premature senescence plays a major role in retinal diseases. In this study, we investigated the relationship between endothelial dysfunction, endoplasmic reticulum (ER) stress, and cellular senescence in the development of retinal dysfunction. We tested the hypothesis that constant endothelial activation by transmembrane tumor necrosis factor-α (tmTNF-α) exacerbates age-induced visual deficits via senescence-mediated ER stress in this model. To address this, we employed a mouse model of chronic vascular activation using endothelial-specific TNF-α-expressing (tie2-TNF) mice at 5 and 10 months of age. Visual deficits were exhibited by tie2-TNF mice at both 5 months and 10 months of age, with the older mice showing statistically significant loss of visual acuity compared with tie2-TNF mice at age 5 months. The neural defects, as measured by electroretinogram (ERG), also followed a similar trend in an age-dependent fashion, with 10-month-old tie2-TNF mice showing the greatest decrease in “b” wave amplitude at 25 cd.s.m 2 compared with age-matched wildtype (WT) mice and five-month-old tie2-TNF mice. While gene and protein expression from the whole retinal extracts demonstrated increased inflammatory (Icam1, Ccl2), stress-associated premature senescence (p16, p21, p53), and ER stress (Grp78, p-Ire1α, Chop) markers in five-month-old tie2-TNF mice compared with five-month-old WT mice, a further increase was seen in 10-month-old tie2-TNF mice. Our data demonstrate that tie2-TNF mice exhibit age-associated increases in visual deficits, and these data suggest that inflammatory endothelial activation is at least partly at play. Given the correlation of increased premature senescence and ER stress in an age-dependent fashion, with the loss of visual functions and increased endothelial activation, our data suggest a possible self-enhanced loop of unfolded protein response pathways and senescence in propagating neurovascular defects in this model. Impact statement: Vision loss in most retinal diseases affects the quality of life of working age adults. Using a novel animal model that displays constant endothelial activation by tmTNF-α, our results demonstrate exacerbated age-induced visual deficits via premature senescence-mediated ER stress. We have compared mice of 5 and 10 months of age, with highly relevant human equivalencies of approximately 35- and 50-year-old patients, representing mature adult and middle-aged subjects, respectively. Our studies suggest a possible role for a self-enhanced loop of ER stress pathways and senescence in the propagation of retinal neurovascular defects, under conditions of constant endothelial activation induced by tmTNF-α signaling.

UR - http://www.scopus.com/inward/record.url?scp=85052582270&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85052582270&partnerID=8YFLogxK

U2 - 10.1177/1535370218794915

DO - 10.1177/1535370218794915

M3 - Article

VL - 243

SP - 976

EP - 984

JO - Experimental Biology and Medicine

JF - Experimental Biology and Medicine

SN - 1535-3702

IS - 12

ER -