Forelimb amputation-induced reorganization in the cuneate nucleus (CN) is not reflected in large-scale reorganization in rat forepaw barrel subfield cortex (FBS)

Cheng X. Li, Qiuhong Yang, Sridevi Vemulapalli, Robert Waters

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

We examined reorganization in cuneate nucleus (CN) in juvenile rat following forelimb amputation (n=34) and in intact controls (n=5) to determine whether CN forms a substrate for large-scale reorganization in forepaw barrel subfield (FBS) cortex. New input from the shoulder first appears in the FBS 4 weeks after amputation, and by 6 weeks, the new shoulder input comes to occupy most of the FBS. Electrophysiological recording was used to map CN in controls and in forelimb amputees during the first 12 weeks following deafferentation and at 26 and 30 weeks post-amputation. Mapping was confined to a location 300 μm anterior to the obex where a medial-to-lateral row of electrode penetrations traversed through a complete complement of cytochrome-oxidase stained clusters (called barrelettes) that are associated with the representation of the glabrous forepaw digits and pads and adjacent non-cluster zones that are associated with the representation of the wrist, arm, and shoulder. Following amputation, non-cluster zones became occupied with new input from the body/chest and head/neck, while the cluster zone remained largely devoid of new input except at the border. A regression analysis comparing controls and amputees over the first 12 weeks post-amputation found significant differences for the total area of new input from the body/chest and head/neck in the non-cluster zones, while no significant differences were found for any new input into the cluster zone. When the averaged areas of a body-part representation were re-examined as a percentage of the averaged zonal area, a non-significant increase in new input from the body was observed within the cluster zone during post-amputation weeks 2-3 that returned to baseline in the subsequent weeks. In contrast, significant differences in averaged area of body-part representations for body/chest and head/neck were found in non-cluster zones over the first 12 weeks post-amputation. The present findings suggest that reorganization occurs only within the non-cluster zones whereby new input from the body/chest and head/neck moves in and occupies the deafferented territory immediately after amputation. Additionally, the lack of significant differences in new shoulder input in either cluster or non-cluster zones over the first 12 weeks after amputation suggests that CN provides an unlikely substrate for large-scale reorganization in the FBS.

Original languageEnglish (US)
Pages (from-to)26-43
Number of pages18
JournalBrain Research
Volume1526
DOIs
StatePublished - Aug 14 2013

Fingerprint

Forelimb
Amputation
Neck
Thorax
Head
Amputees
Body Image
Human Body
Electron Transport Complex IV
Wrist
Electrodes
Arm
Regression Analysis

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Clinical Neurology
  • Developmental Biology
  • Molecular Biology

Cite this

Forelimb amputation-induced reorganization in the cuneate nucleus (CN) is not reflected in large-scale reorganization in rat forepaw barrel subfield cortex (FBS). / Li, Cheng X.; Yang, Qiuhong; Vemulapalli, Sridevi; Waters, Robert.

In: Brain Research, Vol. 1526, 14.08.2013, p. 26-43.

Research output: Contribution to journalArticle

@article{c80a574cd70a4dcc9e5c5febdf79371b,
title = "Forelimb amputation-induced reorganization in the cuneate nucleus (CN) is not reflected in large-scale reorganization in rat forepaw barrel subfield cortex (FBS)",
abstract = "We examined reorganization in cuneate nucleus (CN) in juvenile rat following forelimb amputation (n=34) and in intact controls (n=5) to determine whether CN forms a substrate for large-scale reorganization in forepaw barrel subfield (FBS) cortex. New input from the shoulder first appears in the FBS 4 weeks after amputation, and by 6 weeks, the new shoulder input comes to occupy most of the FBS. Electrophysiological recording was used to map CN in controls and in forelimb amputees during the first 12 weeks following deafferentation and at 26 and 30 weeks post-amputation. Mapping was confined to a location 300 μm anterior to the obex where a medial-to-lateral row of electrode penetrations traversed through a complete complement of cytochrome-oxidase stained clusters (called barrelettes) that are associated with the representation of the glabrous forepaw digits and pads and adjacent non-cluster zones that are associated with the representation of the wrist, arm, and shoulder. Following amputation, non-cluster zones became occupied with new input from the body/chest and head/neck, while the cluster zone remained largely devoid of new input except at the border. A regression analysis comparing controls and amputees over the first 12 weeks post-amputation found significant differences for the total area of new input from the body/chest and head/neck in the non-cluster zones, while no significant differences were found for any new input into the cluster zone. When the averaged areas of a body-part representation were re-examined as a percentage of the averaged zonal area, a non-significant increase in new input from the body was observed within the cluster zone during post-amputation weeks 2-3 that returned to baseline in the subsequent weeks. In contrast, significant differences in averaged area of body-part representations for body/chest and head/neck were found in non-cluster zones over the first 12 weeks post-amputation. The present findings suggest that reorganization occurs only within the non-cluster zones whereby new input from the body/chest and head/neck moves in and occupies the deafferented territory immediately after amputation. Additionally, the lack of significant differences in new shoulder input in either cluster or non-cluster zones over the first 12 weeks after amputation suggests that CN provides an unlikely substrate for large-scale reorganization in the FBS.",
author = "Li, {Cheng X.} and Qiuhong Yang and Sridevi Vemulapalli and Robert Waters",
year = "2013",
month = "8",
day = "14",
doi = "10.1016/j.brainres.2013.05.049",
language = "English (US)",
volume = "1526",
pages = "26--43",
journal = "Brain Research",
issn = "0006-8993",
publisher = "Elsevier",

}

TY - JOUR

T1 - Forelimb amputation-induced reorganization in the cuneate nucleus (CN) is not reflected in large-scale reorganization in rat forepaw barrel subfield cortex (FBS)

AU - Li, Cheng X.

AU - Yang, Qiuhong

AU - Vemulapalli, Sridevi

AU - Waters, Robert

PY - 2013/8/14

Y1 - 2013/8/14

N2 - We examined reorganization in cuneate nucleus (CN) in juvenile rat following forelimb amputation (n=34) and in intact controls (n=5) to determine whether CN forms a substrate for large-scale reorganization in forepaw barrel subfield (FBS) cortex. New input from the shoulder first appears in the FBS 4 weeks after amputation, and by 6 weeks, the new shoulder input comes to occupy most of the FBS. Electrophysiological recording was used to map CN in controls and in forelimb amputees during the first 12 weeks following deafferentation and at 26 and 30 weeks post-amputation. Mapping was confined to a location 300 μm anterior to the obex where a medial-to-lateral row of electrode penetrations traversed through a complete complement of cytochrome-oxidase stained clusters (called barrelettes) that are associated with the representation of the glabrous forepaw digits and pads and adjacent non-cluster zones that are associated with the representation of the wrist, arm, and shoulder. Following amputation, non-cluster zones became occupied with new input from the body/chest and head/neck, while the cluster zone remained largely devoid of new input except at the border. A regression analysis comparing controls and amputees over the first 12 weeks post-amputation found significant differences for the total area of new input from the body/chest and head/neck in the non-cluster zones, while no significant differences were found for any new input into the cluster zone. When the averaged areas of a body-part representation were re-examined as a percentage of the averaged zonal area, a non-significant increase in new input from the body was observed within the cluster zone during post-amputation weeks 2-3 that returned to baseline in the subsequent weeks. In contrast, significant differences in averaged area of body-part representations for body/chest and head/neck were found in non-cluster zones over the first 12 weeks post-amputation. The present findings suggest that reorganization occurs only within the non-cluster zones whereby new input from the body/chest and head/neck moves in and occupies the deafferented territory immediately after amputation. Additionally, the lack of significant differences in new shoulder input in either cluster or non-cluster zones over the first 12 weeks after amputation suggests that CN provides an unlikely substrate for large-scale reorganization in the FBS.

AB - We examined reorganization in cuneate nucleus (CN) in juvenile rat following forelimb amputation (n=34) and in intact controls (n=5) to determine whether CN forms a substrate for large-scale reorganization in forepaw barrel subfield (FBS) cortex. New input from the shoulder first appears in the FBS 4 weeks after amputation, and by 6 weeks, the new shoulder input comes to occupy most of the FBS. Electrophysiological recording was used to map CN in controls and in forelimb amputees during the first 12 weeks following deafferentation and at 26 and 30 weeks post-amputation. Mapping was confined to a location 300 μm anterior to the obex where a medial-to-lateral row of electrode penetrations traversed through a complete complement of cytochrome-oxidase stained clusters (called barrelettes) that are associated with the representation of the glabrous forepaw digits and pads and adjacent non-cluster zones that are associated with the representation of the wrist, arm, and shoulder. Following amputation, non-cluster zones became occupied with new input from the body/chest and head/neck, while the cluster zone remained largely devoid of new input except at the border. A regression analysis comparing controls and amputees over the first 12 weeks post-amputation found significant differences for the total area of new input from the body/chest and head/neck in the non-cluster zones, while no significant differences were found for any new input into the cluster zone. When the averaged areas of a body-part representation were re-examined as a percentage of the averaged zonal area, a non-significant increase in new input from the body was observed within the cluster zone during post-amputation weeks 2-3 that returned to baseline in the subsequent weeks. In contrast, significant differences in averaged area of body-part representations for body/chest and head/neck were found in non-cluster zones over the first 12 weeks post-amputation. The present findings suggest that reorganization occurs only within the non-cluster zones whereby new input from the body/chest and head/neck moves in and occupies the deafferented territory immediately after amputation. Additionally, the lack of significant differences in new shoulder input in either cluster or non-cluster zones over the first 12 weeks after amputation suggests that CN provides an unlikely substrate for large-scale reorganization in the FBS.

UR - http://www.scopus.com/inward/record.url?scp=84880917419&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84880917419&partnerID=8YFLogxK

U2 - 10.1016/j.brainres.2013.05.049

DO - 10.1016/j.brainres.2013.05.049

M3 - Article

VL - 1526

SP - 26

EP - 43

JO - Brain Research

JF - Brain Research

SN - 0006-8993

ER -