Functional TauT protects against acute kidney injury

Xiaobin Han, Junming Yue, Russell W. Chesney

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

Nephrotoxicity is common with the use of the chemotherapeutic agent cisplatin, but the cellular mechanisms that modulate the extent of injury are unknown. Cisplatin downregulates expression of the taurine transporter gene (TauT) in LLC-PK1 proximal tubular renal cells, and forced overexpression of TauT protects against cisplatin-induced apoptosis in vitro. Because the S3 segments of proximal tubules are the sites of both cisplatin-induced injury and adaptive regulation of the taurine transporter, we hypothesized that TauT functions as an anti-apoptotic gene and protects renal cells from cisplatininduced nephrotoxicity in vivo. Here, we studied the regulation of TauT in cisplatin nephrotoxicity in a human embryonic kidney cell line and in LLC-PK1 cells, as well as in TauT transgenic mice. Cisplatin-induced activation of p53 repressed TauT and overexpression of TauT prevented the progression of cisplatin-induced apoptosis and renal dysfunction in TauT transgenic mice. Although cisplatin activated p53 and PUMA (a p53-responsive proapoptotic Bcl-2 family protein) in the kidneys of both wildtype and TauT transgenic mice, only wildtype animals demonstrated acute kidney injury. These data suggest that functional TauT plays a critical role in protecting against cisplatin-induced nephrotoxicity, possibly by attenuating a p53-dependent pathway.

Original languageEnglish (US)
Pages (from-to)1323-1332
Number of pages10
JournalJournal of the American Society of Nephrology
Volume20
Issue number6
DOIs
StatePublished - Jun 1 2009

Fingerprint

Acute Kidney Injury
Cisplatin
Genes
Kidney
Transgenic Mice
taurine transporter
LLC-PK1 Cells
Apoptosis
Wounds and Injuries
Down-Regulation
Cell Line

All Science Journal Classification (ASJC) codes

  • Nephrology

Cite this

Functional TauT protects against acute kidney injury. / Han, Xiaobin; Yue, Junming; Chesney, Russell W.

In: Journal of the American Society of Nephrology, Vol. 20, No. 6, 01.06.2009, p. 1323-1332.

Research output: Contribution to journalArticle

@article{854bfbfd75924307b180ae7d67f29486,
title = "Functional TauT protects against acute kidney injury",
abstract = "Nephrotoxicity is common with the use of the chemotherapeutic agent cisplatin, but the cellular mechanisms that modulate the extent of injury are unknown. Cisplatin downregulates expression of the taurine transporter gene (TauT) in LLC-PK1 proximal tubular renal cells, and forced overexpression of TauT protects against cisplatin-induced apoptosis in vitro. Because the S3 segments of proximal tubules are the sites of both cisplatin-induced injury and adaptive regulation of the taurine transporter, we hypothesized that TauT functions as an anti-apoptotic gene and protects renal cells from cisplatininduced nephrotoxicity in vivo. Here, we studied the regulation of TauT in cisplatin nephrotoxicity in a human embryonic kidney cell line and in LLC-PK1 cells, as well as in TauT transgenic mice. Cisplatin-induced activation of p53 repressed TauT and overexpression of TauT prevented the progression of cisplatin-induced apoptosis and renal dysfunction in TauT transgenic mice. Although cisplatin activated p53 and PUMA (a p53-responsive proapoptotic Bcl-2 family protein) in the kidneys of both wildtype and TauT transgenic mice, only wildtype animals demonstrated acute kidney injury. These data suggest that functional TauT plays a critical role in protecting against cisplatin-induced nephrotoxicity, possibly by attenuating a p53-dependent pathway.",
author = "Xiaobin Han and Junming Yue and Chesney, {Russell W.}",
year = "2009",
month = "6",
day = "1",
doi = "10.1681/ASN.2008050465",
language = "English (US)",
volume = "20",
pages = "1323--1332",
journal = "Journal of the American Society of Nephrology : JASN",
issn = "1046-6673",
publisher = "American Society of Nephrology",
number = "6",

}

TY - JOUR

T1 - Functional TauT protects against acute kidney injury

AU - Han, Xiaobin

AU - Yue, Junming

AU - Chesney, Russell W.

PY - 2009/6/1

Y1 - 2009/6/1

N2 - Nephrotoxicity is common with the use of the chemotherapeutic agent cisplatin, but the cellular mechanisms that modulate the extent of injury are unknown. Cisplatin downregulates expression of the taurine transporter gene (TauT) in LLC-PK1 proximal tubular renal cells, and forced overexpression of TauT protects against cisplatin-induced apoptosis in vitro. Because the S3 segments of proximal tubules are the sites of both cisplatin-induced injury and adaptive regulation of the taurine transporter, we hypothesized that TauT functions as an anti-apoptotic gene and protects renal cells from cisplatininduced nephrotoxicity in vivo. Here, we studied the regulation of TauT in cisplatin nephrotoxicity in a human embryonic kidney cell line and in LLC-PK1 cells, as well as in TauT transgenic mice. Cisplatin-induced activation of p53 repressed TauT and overexpression of TauT prevented the progression of cisplatin-induced apoptosis and renal dysfunction in TauT transgenic mice. Although cisplatin activated p53 and PUMA (a p53-responsive proapoptotic Bcl-2 family protein) in the kidneys of both wildtype and TauT transgenic mice, only wildtype animals demonstrated acute kidney injury. These data suggest that functional TauT plays a critical role in protecting against cisplatin-induced nephrotoxicity, possibly by attenuating a p53-dependent pathway.

AB - Nephrotoxicity is common with the use of the chemotherapeutic agent cisplatin, but the cellular mechanisms that modulate the extent of injury are unknown. Cisplatin downregulates expression of the taurine transporter gene (TauT) in LLC-PK1 proximal tubular renal cells, and forced overexpression of TauT protects against cisplatin-induced apoptosis in vitro. Because the S3 segments of proximal tubules are the sites of both cisplatin-induced injury and adaptive regulation of the taurine transporter, we hypothesized that TauT functions as an anti-apoptotic gene and protects renal cells from cisplatininduced nephrotoxicity in vivo. Here, we studied the regulation of TauT in cisplatin nephrotoxicity in a human embryonic kidney cell line and in LLC-PK1 cells, as well as in TauT transgenic mice. Cisplatin-induced activation of p53 repressed TauT and overexpression of TauT prevented the progression of cisplatin-induced apoptosis and renal dysfunction in TauT transgenic mice. Although cisplatin activated p53 and PUMA (a p53-responsive proapoptotic Bcl-2 family protein) in the kidneys of both wildtype and TauT transgenic mice, only wildtype animals demonstrated acute kidney injury. These data suggest that functional TauT plays a critical role in protecting against cisplatin-induced nephrotoxicity, possibly by attenuating a p53-dependent pathway.

UR - http://www.scopus.com/inward/record.url?scp=67449095329&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67449095329&partnerID=8YFLogxK

U2 - 10.1681/ASN.2008050465

DO - 10.1681/ASN.2008050465

M3 - Article

VL - 20

SP - 1323

EP - 1332

JO - Journal of the American Society of Nephrology : JASN

JF - Journal of the American Society of Nephrology : JASN

SN - 1046-6673

IS - 6

ER -