Heme oxygenase inhibition reduces neuronal activation evoked by bicuculline in newborn pigs

Elena Parfenova, Michael L. Daley, Pierluigi Carratu, Charles Leffler

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Carbon monoxide (CO) is a product of heme degradation by heme oxygenase (HO) that is highly expressed in the brain. The present study addresses the hypothesis that CO can be involved in brain neuronal function. The effects of the HO inhibitor, tin protoporphyrin (SnPP), on brain electrical activity and pial arteriolar diameter were examined using quantitative electroencephalography (EEG) and cranial window techniques in the bicuculline model of sustained generalized seizures in newborn pigs. SnPP (3 mg/kg i.v.) inhibits brain HO as indicated by blocking cerebral vasodilation to heme and decreasing CO concentration in cortical periarachnoid cerebrospinal fluid. The quantitative spectral analysis of digitalized scalp EEG recordings was performed to determine the EEG amplitude and spectral power within a 1-15-Hz frequency range. SnPP did not affect basal brain EEG parameters. Bicuculline (3 mg/kg i.v.) immediately (in <1 min) evoked bursts of brain electrical activity characterized by four- to seven-fold increases in EEG amplitude and power in all analyzed frequency bands that occurred simultaneously with cerebral vasodilation. Increased EEG activity and cerebral vasodilation were sustained for a 2h period. SnPP inhibited cerebral vasodilation but did not affect the EEG amplitude evoked by bicuculline. However, 20-40% reductions of the power in 7.5 Hz (theta), 10 and 12.5 Hz (alpha), and a 15-Hz (beta) bands, the major evoked EEG spectral components, were observed for the duration of seizures in SnPP-treated animals. These findings suggest that endogenous CO can have proconvulsant action and affect neuronal activation during seizures.

Original languageEnglish (US)
Pages (from-to)87-96
Number of pages10
JournalBrain Research
Volume1014
Issue number1-2
DOIs
StatePublished - Jul 16 2004

Fingerprint

Heme Oxygenase (Decyclizing)
Bicuculline
Electroencephalography
Swine
Carbon Monoxide
Vasodilation
Brain
Seizures
Heme
Scalp
Cerebrospinal Fluid

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Cite this

Heme oxygenase inhibition reduces neuronal activation evoked by bicuculline in newborn pigs. / Parfenova, Elena; Daley, Michael L.; Carratu, Pierluigi; Leffler, Charles.

In: Brain Research, Vol. 1014, No. 1-2, 16.07.2004, p. 87-96.

Research output: Contribution to journalArticle

@article{88cd580f8b20425ca679400c3d3b2bbf,
title = "Heme oxygenase inhibition reduces neuronal activation evoked by bicuculline in newborn pigs",
abstract = "Carbon monoxide (CO) is a product of heme degradation by heme oxygenase (HO) that is highly expressed in the brain. The present study addresses the hypothesis that CO can be involved in brain neuronal function. The effects of the HO inhibitor, tin protoporphyrin (SnPP), on brain electrical activity and pial arteriolar diameter were examined using quantitative electroencephalography (EEG) and cranial window techniques in the bicuculline model of sustained generalized seizures in newborn pigs. SnPP (3 mg/kg i.v.) inhibits brain HO as indicated by blocking cerebral vasodilation to heme and decreasing CO concentration in cortical periarachnoid cerebrospinal fluid. The quantitative spectral analysis of digitalized scalp EEG recordings was performed to determine the EEG amplitude and spectral power within a 1-15-Hz frequency range. SnPP did not affect basal brain EEG parameters. Bicuculline (3 mg/kg i.v.) immediately (in <1 min) evoked bursts of brain electrical activity characterized by four- to seven-fold increases in EEG amplitude and power in all analyzed frequency bands that occurred simultaneously with cerebral vasodilation. Increased EEG activity and cerebral vasodilation were sustained for a 2h period. SnPP inhibited cerebral vasodilation but did not affect the EEG amplitude evoked by bicuculline. However, 20-40{\%} reductions of the power in 7.5 Hz (theta), 10 and 12.5 Hz (alpha), and a 15-Hz (beta) bands, the major evoked EEG spectral components, were observed for the duration of seizures in SnPP-treated animals. These findings suggest that endogenous CO can have proconvulsant action and affect neuronal activation during seizures.",
author = "Elena Parfenova and Daley, {Michael L.} and Pierluigi Carratu and Charles Leffler",
year = "2004",
month = "7",
day = "16",
doi = "10.1016/j.brainres.2004.03.052",
language = "English (US)",
volume = "1014",
pages = "87--96",
journal = "Brain Research",
issn = "0006-8993",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Heme oxygenase inhibition reduces neuronal activation evoked by bicuculline in newborn pigs

AU - Parfenova, Elena

AU - Daley, Michael L.

AU - Carratu, Pierluigi

AU - Leffler, Charles

PY - 2004/7/16

Y1 - 2004/7/16

N2 - Carbon monoxide (CO) is a product of heme degradation by heme oxygenase (HO) that is highly expressed in the brain. The present study addresses the hypothesis that CO can be involved in brain neuronal function. The effects of the HO inhibitor, tin protoporphyrin (SnPP), on brain electrical activity and pial arteriolar diameter were examined using quantitative electroencephalography (EEG) and cranial window techniques in the bicuculline model of sustained generalized seizures in newborn pigs. SnPP (3 mg/kg i.v.) inhibits brain HO as indicated by blocking cerebral vasodilation to heme and decreasing CO concentration in cortical periarachnoid cerebrospinal fluid. The quantitative spectral analysis of digitalized scalp EEG recordings was performed to determine the EEG amplitude and spectral power within a 1-15-Hz frequency range. SnPP did not affect basal brain EEG parameters. Bicuculline (3 mg/kg i.v.) immediately (in <1 min) evoked bursts of brain electrical activity characterized by four- to seven-fold increases in EEG amplitude and power in all analyzed frequency bands that occurred simultaneously with cerebral vasodilation. Increased EEG activity and cerebral vasodilation were sustained for a 2h period. SnPP inhibited cerebral vasodilation but did not affect the EEG amplitude evoked by bicuculline. However, 20-40% reductions of the power in 7.5 Hz (theta), 10 and 12.5 Hz (alpha), and a 15-Hz (beta) bands, the major evoked EEG spectral components, were observed for the duration of seizures in SnPP-treated animals. These findings suggest that endogenous CO can have proconvulsant action and affect neuronal activation during seizures.

AB - Carbon monoxide (CO) is a product of heme degradation by heme oxygenase (HO) that is highly expressed in the brain. The present study addresses the hypothesis that CO can be involved in brain neuronal function. The effects of the HO inhibitor, tin protoporphyrin (SnPP), on brain electrical activity and pial arteriolar diameter were examined using quantitative electroencephalography (EEG) and cranial window techniques in the bicuculline model of sustained generalized seizures in newborn pigs. SnPP (3 mg/kg i.v.) inhibits brain HO as indicated by blocking cerebral vasodilation to heme and decreasing CO concentration in cortical periarachnoid cerebrospinal fluid. The quantitative spectral analysis of digitalized scalp EEG recordings was performed to determine the EEG amplitude and spectral power within a 1-15-Hz frequency range. SnPP did not affect basal brain EEG parameters. Bicuculline (3 mg/kg i.v.) immediately (in <1 min) evoked bursts of brain electrical activity characterized by four- to seven-fold increases in EEG amplitude and power in all analyzed frequency bands that occurred simultaneously with cerebral vasodilation. Increased EEG activity and cerebral vasodilation were sustained for a 2h period. SnPP inhibited cerebral vasodilation but did not affect the EEG amplitude evoked by bicuculline. However, 20-40% reductions of the power in 7.5 Hz (theta), 10 and 12.5 Hz (alpha), and a 15-Hz (beta) bands, the major evoked EEG spectral components, were observed for the duration of seizures in SnPP-treated animals. These findings suggest that endogenous CO can have proconvulsant action and affect neuronal activation during seizures.

UR - http://www.scopus.com/inward/record.url?scp=2942738799&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2942738799&partnerID=8YFLogxK

U2 - 10.1016/j.brainres.2004.03.052

DO - 10.1016/j.brainres.2004.03.052

M3 - Article

VL - 1014

SP - 87

EP - 96

JO - Brain Research

JF - Brain Research

SN - 0006-8993

IS - 1-2

ER -