I-Aq and I-Ap bind and present similar antigenic peptides despite differing in their ability to mediate susceptibility to autoimmune arthritis

David Brand, Karen B. Whittington, Edward F. Rosloniec

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Susceptibility to collagen induced arthritis (CIA) in the murine model is linked to expression of the MHC class II alleles, I-Aq and I-Ar. We have examined the molecular basis for this MHC-linked susceptibility by studying the antigen presentation function of two class II molecules, I-Aq and I-Ap, that are closely related yet differ in mediating susceptibility to CIA. These class II molecules differ by only 4 amino acids, yet only mice expressing I-Aq develop CIA. Although the I-Ap molecule can bind the same immunodominant determinant from type II collagen as I-Aq, H-2p APC have difficulty generating I-Ap:CII peptide complexes when processing of CII is required. Immunization of H-2p mice with type II collagen (CII) generated only a weak T cell response when compared to H-2q mice, whereas immunization with the a CII peptide containing the dominant determinant induced a strong T cell response in both strains. In antigen presentation assays, H-2p APC were very inefficient in stimulating T cells when native CII was used as antigen, however they presented CII synthetic peptides with similar efficiency as H-2q APC. Processing and presentation of other antigens by H-2p APC was not affected. Using soluble class II binding assays, the affinity of I-Ap for the CII dominant peptide was 10 to 50 fold lower than I-Aq, however, this reduced affinity was not a general defect in I-Ap function. I-Aq and I-Ap had virtually identical affinities for binding other antigenic peptides. These data indicate that MHC-based susceptibility to autoimmunity may involve more than simple determinant selection and that the successful generation of an antigenic peptide by processing may be related to the overall affinity of the peptide for the MHC molecule.

Original languageEnglish (US)
Pages (from-to)133-145
Number of pages13
JournalAutoimmunity
Volume34
Issue number2
DOIs
StatePublished - Jan 1 2001

Fingerprint

Arthritis
Peptides
Experimental Arthritis
Antigen Presentation
Collagen Type II
T-Lymphocytes
Immunization
Immunodominant Epitopes
Autoimmunity
Alleles
Antigens
Amino Acids

All Science Journal Classification (ASJC) codes

  • Immunology and Allergy
  • Immunology

Cite this

I-Aq and I-Ap bind and present similar antigenic peptides despite differing in their ability to mediate susceptibility to autoimmune arthritis. / Brand, David; Whittington, Karen B.; Rosloniec, Edward F.

In: Autoimmunity, Vol. 34, No. 2, 01.01.2001, p. 133-145.

Research output: Contribution to journalArticle

@article{e90eb9af645e49e69ede3cc8950a45dd,
title = "I-Aq and I-Ap bind and present similar antigenic peptides despite differing in their ability to mediate susceptibility to autoimmune arthritis",
abstract = "Susceptibility to collagen induced arthritis (CIA) in the murine model is linked to expression of the MHC class II alleles, I-Aq and I-Ar. We have examined the molecular basis for this MHC-linked susceptibility by studying the antigen presentation function of two class II molecules, I-Aq and I-Ap, that are closely related yet differ in mediating susceptibility to CIA. These class II molecules differ by only 4 amino acids, yet only mice expressing I-Aq develop CIA. Although the I-Ap molecule can bind the same immunodominant determinant from type II collagen as I-Aq, H-2p APC have difficulty generating I-Ap:CII peptide complexes when processing of CII is required. Immunization of H-2p mice with type II collagen (CII) generated only a weak T cell response when compared to H-2q mice, whereas immunization with the a CII peptide containing the dominant determinant induced a strong T cell response in both strains. In antigen presentation assays, H-2p APC were very inefficient in stimulating T cells when native CII was used as antigen, however they presented CII synthetic peptides with similar efficiency as H-2q APC. Processing and presentation of other antigens by H-2p APC was not affected. Using soluble class II binding assays, the affinity of I-Ap for the CII dominant peptide was 10 to 50 fold lower than I-Aq, however, this reduced affinity was not a general defect in I-Ap function. I-Aq and I-Ap had virtually identical affinities for binding other antigenic peptides. These data indicate that MHC-based susceptibility to autoimmunity may involve more than simple determinant selection and that the successful generation of an antigenic peptide by processing may be related to the overall affinity of the peptide for the MHC molecule.",
author = "David Brand and Whittington, {Karen B.} and Rosloniec, {Edward F.}",
year = "2001",
month = "1",
day = "1",
doi = "10.3109/08916930109001961",
language = "English (US)",
volume = "34",
pages = "133--145",
journal = "Autoimmunity",
issn = "0891-6934",
publisher = "Informa Healthcare",
number = "2",

}

TY - JOUR

T1 - I-Aq and I-Ap bind and present similar antigenic peptides despite differing in their ability to mediate susceptibility to autoimmune arthritis

AU - Brand, David

AU - Whittington, Karen B.

AU - Rosloniec, Edward F.

PY - 2001/1/1

Y1 - 2001/1/1

N2 - Susceptibility to collagen induced arthritis (CIA) in the murine model is linked to expression of the MHC class II alleles, I-Aq and I-Ar. We have examined the molecular basis for this MHC-linked susceptibility by studying the antigen presentation function of two class II molecules, I-Aq and I-Ap, that are closely related yet differ in mediating susceptibility to CIA. These class II molecules differ by only 4 amino acids, yet only mice expressing I-Aq develop CIA. Although the I-Ap molecule can bind the same immunodominant determinant from type II collagen as I-Aq, H-2p APC have difficulty generating I-Ap:CII peptide complexes when processing of CII is required. Immunization of H-2p mice with type II collagen (CII) generated only a weak T cell response when compared to H-2q mice, whereas immunization with the a CII peptide containing the dominant determinant induced a strong T cell response in both strains. In antigen presentation assays, H-2p APC were very inefficient in stimulating T cells when native CII was used as antigen, however they presented CII synthetic peptides with similar efficiency as H-2q APC. Processing and presentation of other antigens by H-2p APC was not affected. Using soluble class II binding assays, the affinity of I-Ap for the CII dominant peptide was 10 to 50 fold lower than I-Aq, however, this reduced affinity was not a general defect in I-Ap function. I-Aq and I-Ap had virtually identical affinities for binding other antigenic peptides. These data indicate that MHC-based susceptibility to autoimmunity may involve more than simple determinant selection and that the successful generation of an antigenic peptide by processing may be related to the overall affinity of the peptide for the MHC molecule.

AB - Susceptibility to collagen induced arthritis (CIA) in the murine model is linked to expression of the MHC class II alleles, I-Aq and I-Ar. We have examined the molecular basis for this MHC-linked susceptibility by studying the antigen presentation function of two class II molecules, I-Aq and I-Ap, that are closely related yet differ in mediating susceptibility to CIA. These class II molecules differ by only 4 amino acids, yet only mice expressing I-Aq develop CIA. Although the I-Ap molecule can bind the same immunodominant determinant from type II collagen as I-Aq, H-2p APC have difficulty generating I-Ap:CII peptide complexes when processing of CII is required. Immunization of H-2p mice with type II collagen (CII) generated only a weak T cell response when compared to H-2q mice, whereas immunization with the a CII peptide containing the dominant determinant induced a strong T cell response in both strains. In antigen presentation assays, H-2p APC were very inefficient in stimulating T cells when native CII was used as antigen, however they presented CII synthetic peptides with similar efficiency as H-2q APC. Processing and presentation of other antigens by H-2p APC was not affected. Using soluble class II binding assays, the affinity of I-Ap for the CII dominant peptide was 10 to 50 fold lower than I-Aq, however, this reduced affinity was not a general defect in I-Ap function. I-Aq and I-Ap had virtually identical affinities for binding other antigenic peptides. These data indicate that MHC-based susceptibility to autoimmunity may involve more than simple determinant selection and that the successful generation of an antigenic peptide by processing may be related to the overall affinity of the peptide for the MHC molecule.

UR - http://www.scopus.com/inward/record.url?scp=0035544710&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035544710&partnerID=8YFLogxK

U2 - 10.3109/08916930109001961

DO - 10.3109/08916930109001961

M3 - Article

VL - 34

SP - 133

EP - 145

JO - Autoimmunity

JF - Autoimmunity

SN - 0891-6934

IS - 2

ER -