In vivo information-guided prediction approach for assessing the risks of drug-drug interactions associated with circulating inhibitory metabolites

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

The in vivo drug-drug interaction (DDI) risks associated with cytochrome P450 inhibitors that have circulating inhibitory metabolites cannot be accurately predicted by conventional in vitro-based methods. A novel approach, in vivo information-guided prediction (IVIP), was recently introduced for CYP3A- and CYP2D6-mediated DDIs. This technique should be applicable to the prediction of DDIs involving other important cytochrome P450 metabolic pathways. Therefore, the aims of this study were to extend the IVIP approach to CYP2C9-mediated DDIs and evaluate the IVIP approach for predicting DDIs associated with inhibitory metabolites. The analysis was based on data from reported DDIs in the literature. The IVIP approach was modified and extended to CYP2C9-mediated DDIs. Thereafter, the IVIP approach was evaluated for predicting the DDI risks of various inhibitors with inhibitory metabolites. Although the data on CYP2C9-mediated DDIs were limited compared with those for CYP3A- and CYP2D6-mediated DDIs, the modified IVIP approach successfully predicted CYP2C9-mediated DDIs. For the external validation set, the prediction accuracy for area under the plasma concentration-time curve (AUC) ratios ranged from 70 to 125%. The accuracy (75-128%) of the IVIP approach in predicting DDI risks of inhibitors with circulating inhibitory metabolites was more accurate than in vitro-based methods (28-805%). The IVIP model accommodates important confounding factors in the prediction of DDIs, which are difficult to handle using in vitro-based methods. In conclusion, the IVIP approach could be used to predict CYP2C9-mediated DDIs and is easily modified to incorporate the additive effect of circulating inhibitory metabolites.

Original languageEnglish (US)
Pages (from-to)1487-1494
Number of pages8
JournalDrug Metabolism and Disposition
Volume40
Issue number8
DOIs
StatePublished - Aug 1 2012

Fingerprint

Drug Interactions
Cytochrome P-450 CYP3A
Cytochrome P-450 CYP2D6
Pharmaceutical Preparations
Cytochrome P-450 Enzyme System
Metabolic Networks and Pathways
Area Under Curve
Cytochrome P-450 CYP2C9
In Vitro Techniques

All Science Journal Classification (ASJC) codes

  • Pharmacology
  • Pharmaceutical Science

Cite this

@article{525f1a2df22d4f1fb4ae646991c2fadc,
title = "In vivo information-guided prediction approach for assessing the risks of drug-drug interactions associated with circulating inhibitory metabolites",
abstract = "The in vivo drug-drug interaction (DDI) risks associated with cytochrome P450 inhibitors that have circulating inhibitory metabolites cannot be accurately predicted by conventional in vitro-based methods. A novel approach, in vivo information-guided prediction (IVIP), was recently introduced for CYP3A- and CYP2D6-mediated DDIs. This technique should be applicable to the prediction of DDIs involving other important cytochrome P450 metabolic pathways. Therefore, the aims of this study were to extend the IVIP approach to CYP2C9-mediated DDIs and evaluate the IVIP approach for predicting DDIs associated with inhibitory metabolites. The analysis was based on data from reported DDIs in the literature. The IVIP approach was modified and extended to CYP2C9-mediated DDIs. Thereafter, the IVIP approach was evaluated for predicting the DDI risks of various inhibitors with inhibitory metabolites. Although the data on CYP2C9-mediated DDIs were limited compared with those for CYP3A- and CYP2D6-mediated DDIs, the modified IVIP approach successfully predicted CYP2C9-mediated DDIs. For the external validation set, the prediction accuracy for area under the plasma concentration-time curve (AUC) ratios ranged from 70 to 125{\%}. The accuracy (75-128{\%}) of the IVIP approach in predicting DDI risks of inhibitors with circulating inhibitory metabolites was more accurate than in vitro-based methods (28-805{\%}). The IVIP model accommodates important confounding factors in the prediction of DDIs, which are difficult to handle using in vitro-based methods. In conclusion, the IVIP approach could be used to predict CYP2C9-mediated DDIs and is easily modified to incorporate the additive effect of circulating inhibitory metabolites.",
author = "Hu, {Zhe Yi} and Robert Parker and Steven Laizure",
year = "2012",
month = "8",
day = "1",
doi = "10.1124/dmd.112.045799",
language = "English (US)",
volume = "40",
pages = "1487--1494",
journal = "Drug Metabolism and Disposition",
issn = "0090-9556",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "8",

}

TY - JOUR

T1 - In vivo information-guided prediction approach for assessing the risks of drug-drug interactions associated with circulating inhibitory metabolites

AU - Hu, Zhe Yi

AU - Parker, Robert

AU - Laizure, Steven

PY - 2012/8/1

Y1 - 2012/8/1

N2 - The in vivo drug-drug interaction (DDI) risks associated with cytochrome P450 inhibitors that have circulating inhibitory metabolites cannot be accurately predicted by conventional in vitro-based methods. A novel approach, in vivo information-guided prediction (IVIP), was recently introduced for CYP3A- and CYP2D6-mediated DDIs. This technique should be applicable to the prediction of DDIs involving other important cytochrome P450 metabolic pathways. Therefore, the aims of this study were to extend the IVIP approach to CYP2C9-mediated DDIs and evaluate the IVIP approach for predicting DDIs associated with inhibitory metabolites. The analysis was based on data from reported DDIs in the literature. The IVIP approach was modified and extended to CYP2C9-mediated DDIs. Thereafter, the IVIP approach was evaluated for predicting the DDI risks of various inhibitors with inhibitory metabolites. Although the data on CYP2C9-mediated DDIs were limited compared with those for CYP3A- and CYP2D6-mediated DDIs, the modified IVIP approach successfully predicted CYP2C9-mediated DDIs. For the external validation set, the prediction accuracy for area under the plasma concentration-time curve (AUC) ratios ranged from 70 to 125%. The accuracy (75-128%) of the IVIP approach in predicting DDI risks of inhibitors with circulating inhibitory metabolites was more accurate than in vitro-based methods (28-805%). The IVIP model accommodates important confounding factors in the prediction of DDIs, which are difficult to handle using in vitro-based methods. In conclusion, the IVIP approach could be used to predict CYP2C9-mediated DDIs and is easily modified to incorporate the additive effect of circulating inhibitory metabolites.

AB - The in vivo drug-drug interaction (DDI) risks associated with cytochrome P450 inhibitors that have circulating inhibitory metabolites cannot be accurately predicted by conventional in vitro-based methods. A novel approach, in vivo information-guided prediction (IVIP), was recently introduced for CYP3A- and CYP2D6-mediated DDIs. This technique should be applicable to the prediction of DDIs involving other important cytochrome P450 metabolic pathways. Therefore, the aims of this study were to extend the IVIP approach to CYP2C9-mediated DDIs and evaluate the IVIP approach for predicting DDIs associated with inhibitory metabolites. The analysis was based on data from reported DDIs in the literature. The IVIP approach was modified and extended to CYP2C9-mediated DDIs. Thereafter, the IVIP approach was evaluated for predicting the DDI risks of various inhibitors with inhibitory metabolites. Although the data on CYP2C9-mediated DDIs were limited compared with those for CYP3A- and CYP2D6-mediated DDIs, the modified IVIP approach successfully predicted CYP2C9-mediated DDIs. For the external validation set, the prediction accuracy for area under the plasma concentration-time curve (AUC) ratios ranged from 70 to 125%. The accuracy (75-128%) of the IVIP approach in predicting DDI risks of inhibitors with circulating inhibitory metabolites was more accurate than in vitro-based methods (28-805%). The IVIP model accommodates important confounding factors in the prediction of DDIs, which are difficult to handle using in vitro-based methods. In conclusion, the IVIP approach could be used to predict CYP2C9-mediated DDIs and is easily modified to incorporate the additive effect of circulating inhibitory metabolites.

UR - http://www.scopus.com/inward/record.url?scp=84863932116&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863932116&partnerID=8YFLogxK

U2 - 10.1124/dmd.112.045799

DO - 10.1124/dmd.112.045799

M3 - Article

VL - 40

SP - 1487

EP - 1494

JO - Drug Metabolism and Disposition

JF - Drug Metabolism and Disposition

SN - 0090-9556

IS - 8

ER -