Induction of multiple matrix metalloproteinases in human dermal and synovial fibroblasts by Staphylococcus aureus

Implications in the pathogenesis of septic arthritis and other soft tissue infections

Siva Kanangat, Arnold Postlethwaite, Karen Hasty, Andrew Kang, Mark Smeltzer, Whitney Appling, Dennis Schaberg

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

Infections of body tissue by Staphylococcus aureus are quickly followed by degradation of connective tissue. Patients with rheumatoid arthritis are more prone to S. aureus-mediated septic arthritis. Various types of collagen form the major structural matrix of different connective tissues of the body. These different collagens are degraded by specific matrix metalloproteinases (MMPs) produced by fibroblasts, other connective tissue cells, and inflammatory cells that are induced by interleukin-1 (IL-1) and tumor necrosis factor (TNF). To determine the host's contribution in the joint destruction of S. aureus-mediated septic arthritis, we analyzed the MMP expression profile in human dermal and synovial fibroblasts upon exposure to culture supernatant and whole cell lysates of S. aureus. Human dermal and synovial fibroblasts treated with cell lysate and filtered culture supernatants had significantly enhanced expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, and MMP-11 compared with the untreated controls (p < 0.05). In the S. aureus culture supernatant, the MMP induction activity was identified to be within the molecular-weight range of 30 to >50 kDa. The MMP expression profile was similar in fibroblasts exposed to a combination of IL-1/TNF. mRNA levels of several genes of the mitogen-activated protein kinase (MAPK) signal transduction pathway were significantly elevated in fibroblasts treated with S. aureus cell lysate and culture supernatant. Also, tyrosine phosphorylation was significantly higher in fibroblasts treated with S. aureus components. Tyrosine phosphorylation and MAPK gene expression patterns were similar in fibroblasts treated with a combination of IL-1/TNF and S. aureus. Mutants lacking staphylococcal accessory regulator (Sar) and accessory gene regulator (Agr), which cause significantly less severe septic arthritis in murine models, were able to induce expression of several MMP mRNA comparable with that of their isogenic parent strain but induced notably higher levels of tissue inhibitors of metalloproteinases (TIMPs). To our knowledge, this is the first report of induction of multiple MMP/TIMP expression from human dermal and synovial fibroblasts upon S. aureus treatment. We propose that host-derived MMPs contribute to the progressive joint destruction observed in S. aureus-mediated septic arthritis.

Original languageEnglish (US)
Article numberR176
JournalArthritis Research and Therapy
Volume8
DOIs
StatePublished - Dec 1 2006

Fingerprint

Infectious Arthritis
Soft Tissue Infections
Matrix Metalloproteinases
Staphylococcus aureus
Fibroblasts
Skin
Interleukin-1
Tissue Inhibitor of Metalloproteinases
Tumor Necrosis Factor-alpha
Mitogen-Activated Protein Kinases
Connective Tissue
Tyrosine
Matrix Metalloproteinase 10
Matrix Metalloproteinase 11
Collagen
Joints
Phosphorylation
Matrix Metalloproteinase 7
Connective Tissue Cells
Matrix Metalloproteinase 3

All Science Journal Classification (ASJC) codes

  • Rheumatology
  • Immunology and Allergy
  • Immunology

Cite this

@article{9ff4e91e593f4172b4caf6fc650c0884,
title = "Induction of multiple matrix metalloproteinases in human dermal and synovial fibroblasts by Staphylococcus aureus: Implications in the pathogenesis of septic arthritis and other soft tissue infections",
abstract = "Infections of body tissue by Staphylococcus aureus are quickly followed by degradation of connective tissue. Patients with rheumatoid arthritis are more prone to S. aureus-mediated septic arthritis. Various types of collagen form the major structural matrix of different connective tissues of the body. These different collagens are degraded by specific matrix metalloproteinases (MMPs) produced by fibroblasts, other connective tissue cells, and inflammatory cells that are induced by interleukin-1 (IL-1) and tumor necrosis factor (TNF). To determine the host's contribution in the joint destruction of S. aureus-mediated septic arthritis, we analyzed the MMP expression profile in human dermal and synovial fibroblasts upon exposure to culture supernatant and whole cell lysates of S. aureus. Human dermal and synovial fibroblasts treated with cell lysate and filtered culture supernatants had significantly enhanced expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, and MMP-11 compared with the untreated controls (p < 0.05). In the S. aureus culture supernatant, the MMP induction activity was identified to be within the molecular-weight range of 30 to >50 kDa. The MMP expression profile was similar in fibroblasts exposed to a combination of IL-1/TNF. mRNA levels of several genes of the mitogen-activated protein kinase (MAPK) signal transduction pathway were significantly elevated in fibroblasts treated with S. aureus cell lysate and culture supernatant. Also, tyrosine phosphorylation was significantly higher in fibroblasts treated with S. aureus components. Tyrosine phosphorylation and MAPK gene expression patterns were similar in fibroblasts treated with a combination of IL-1/TNF and S. aureus. Mutants lacking staphylococcal accessory regulator (Sar) and accessory gene regulator (Agr), which cause significantly less severe septic arthritis in murine models, were able to induce expression of several MMP mRNA comparable with that of their isogenic parent strain but induced notably higher levels of tissue inhibitors of metalloproteinases (TIMPs). To our knowledge, this is the first report of induction of multiple MMP/TIMP expression from human dermal and synovial fibroblasts upon S. aureus treatment. We propose that host-derived MMPs contribute to the progressive joint destruction observed in S. aureus-mediated septic arthritis.",
author = "Siva Kanangat and Arnold Postlethwaite and Karen Hasty and Andrew Kang and Mark Smeltzer and Whitney Appling and Dennis Schaberg",
year = "2006",
month = "12",
day = "1",
doi = "10.1186/ar2086",
language = "English (US)",
volume = "8",
journal = "Arthritis Research and Therapy",
issn = "1478-6354",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Induction of multiple matrix metalloproteinases in human dermal and synovial fibroblasts by Staphylococcus aureus

T2 - Implications in the pathogenesis of septic arthritis and other soft tissue infections

AU - Kanangat, Siva

AU - Postlethwaite, Arnold

AU - Hasty, Karen

AU - Kang, Andrew

AU - Smeltzer, Mark

AU - Appling, Whitney

AU - Schaberg, Dennis

PY - 2006/12/1

Y1 - 2006/12/1

N2 - Infections of body tissue by Staphylococcus aureus are quickly followed by degradation of connective tissue. Patients with rheumatoid arthritis are more prone to S. aureus-mediated septic arthritis. Various types of collagen form the major structural matrix of different connective tissues of the body. These different collagens are degraded by specific matrix metalloproteinases (MMPs) produced by fibroblasts, other connective tissue cells, and inflammatory cells that are induced by interleukin-1 (IL-1) and tumor necrosis factor (TNF). To determine the host's contribution in the joint destruction of S. aureus-mediated septic arthritis, we analyzed the MMP expression profile in human dermal and synovial fibroblasts upon exposure to culture supernatant and whole cell lysates of S. aureus. Human dermal and synovial fibroblasts treated with cell lysate and filtered culture supernatants had significantly enhanced expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, and MMP-11 compared with the untreated controls (p < 0.05). In the S. aureus culture supernatant, the MMP induction activity was identified to be within the molecular-weight range of 30 to >50 kDa. The MMP expression profile was similar in fibroblasts exposed to a combination of IL-1/TNF. mRNA levels of several genes of the mitogen-activated protein kinase (MAPK) signal transduction pathway were significantly elevated in fibroblasts treated with S. aureus cell lysate and culture supernatant. Also, tyrosine phosphorylation was significantly higher in fibroblasts treated with S. aureus components. Tyrosine phosphorylation and MAPK gene expression patterns were similar in fibroblasts treated with a combination of IL-1/TNF and S. aureus. Mutants lacking staphylococcal accessory regulator (Sar) and accessory gene regulator (Agr), which cause significantly less severe septic arthritis in murine models, were able to induce expression of several MMP mRNA comparable with that of their isogenic parent strain but induced notably higher levels of tissue inhibitors of metalloproteinases (TIMPs). To our knowledge, this is the first report of induction of multiple MMP/TIMP expression from human dermal and synovial fibroblasts upon S. aureus treatment. We propose that host-derived MMPs contribute to the progressive joint destruction observed in S. aureus-mediated septic arthritis.

AB - Infections of body tissue by Staphylococcus aureus are quickly followed by degradation of connective tissue. Patients with rheumatoid arthritis are more prone to S. aureus-mediated septic arthritis. Various types of collagen form the major structural matrix of different connective tissues of the body. These different collagens are degraded by specific matrix metalloproteinases (MMPs) produced by fibroblasts, other connective tissue cells, and inflammatory cells that are induced by interleukin-1 (IL-1) and tumor necrosis factor (TNF). To determine the host's contribution in the joint destruction of S. aureus-mediated septic arthritis, we analyzed the MMP expression profile in human dermal and synovial fibroblasts upon exposure to culture supernatant and whole cell lysates of S. aureus. Human dermal and synovial fibroblasts treated with cell lysate and filtered culture supernatants had significantly enhanced expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, and MMP-11 compared with the untreated controls (p < 0.05). In the S. aureus culture supernatant, the MMP induction activity was identified to be within the molecular-weight range of 30 to >50 kDa. The MMP expression profile was similar in fibroblasts exposed to a combination of IL-1/TNF. mRNA levels of several genes of the mitogen-activated protein kinase (MAPK) signal transduction pathway were significantly elevated in fibroblasts treated with S. aureus cell lysate and culture supernatant. Also, tyrosine phosphorylation was significantly higher in fibroblasts treated with S. aureus components. Tyrosine phosphorylation and MAPK gene expression patterns were similar in fibroblasts treated with a combination of IL-1/TNF and S. aureus. Mutants lacking staphylococcal accessory regulator (Sar) and accessory gene regulator (Agr), which cause significantly less severe septic arthritis in murine models, were able to induce expression of several MMP mRNA comparable with that of their isogenic parent strain but induced notably higher levels of tissue inhibitors of metalloproteinases (TIMPs). To our knowledge, this is the first report of induction of multiple MMP/TIMP expression from human dermal and synovial fibroblasts upon S. aureus treatment. We propose that host-derived MMPs contribute to the progressive joint destruction observed in S. aureus-mediated septic arthritis.

UR - http://www.scopus.com/inward/record.url?scp=33846798053&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33846798053&partnerID=8YFLogxK

U2 - 10.1186/ar2086

DO - 10.1186/ar2086

M3 - Article

VL - 8

JO - Arthritis Research and Therapy

JF - Arthritis Research and Therapy

SN - 1478-6354

M1 - R176

ER -