Influence of ophthalmic nerve fibers on choroidal blood flow and myopic eye growth in chicks

Yung Feng Shih, Malinda E.C. Fitzgerald, Sherry L. Cuthbertson, Anton Reiner

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Ophthalmic sensory nerve fibers containing substance P and calcitonin gene-related peptide' innervate the choroid in mammals and are known to vasodilate choroidal blood vessels. The avian choroid is also innervated by ophthalmic nerve fibers containing substance P and calcitonin gene-related peptide. The present studies were carried out to determine the influence of these sensory fibers on choroidal blood flow in birds and characterize their interaction with manipulations affecting eye growth. In these studies, ChBF was measured using laser Doppler flowmetry in both eyes in the following groups of birds: (1) normal chicks; (2) chicks with right optic nerve transected for 2 weeks; (3) chicks with right optic nerve transected and a goggle over the right eye for 2 weeks; and (4) chicks with right optic and ophthalmic nerves transected and a goggle over the right eye for 2 weeks. The eyes were refracted and various ocular dimensions measured after the blood-flow measurements. It was found that optic nerve transection reduced ChBF to 30% of normal. Placing a goggle (which increases ocular temperature by 4°C) over an optic nerve transected eye nearly doubled choroidal blood flow over that in an optic nerve transected eye without a goggle. Additional transection of the ophthalmic nerve in a goggled optic nerve-transected eye, yielded choroidal blood flow that was indistinguishable from that in a nongoggled optic nerve-transected eye. Optic nerve transection had a slight stunting effect on axial growth of the eye. While myopic axial elongation was observed in goggled eyes with the optic nerve cut, the extent of myopia was less than in normal goggled eyes. Ophthalmic nerve transection further reduced the myopia induced by goggling in an optic nerve cut eye. These results suggest that ophthalmic nerve input to the choroid exerts a vasodilatory influence, which is activated in a goggled eye. This increased choroidal blood flow may be in response to elevated ocular temperatures caused by the goggling and this increase appears to be masked in goggled eyes with an intact optic nerve by the reduction in choroidal blood flow normally accompanying myopic eye growth. Our results thus show that the induction of myopic eye growth (as in our optic nerve cut eyes with a goggle) need not be accompanied by a decrease in choroidal blood flow from the baseline no-goggle condition (in this case, with the optic nerve cut).

Original languageEnglish (US)
Pages (from-to)9-20
Number of pages12
JournalExperimental Eye Research
Volume69
Issue number1
DOIs
StatePublished - Jan 1 1999

Fingerprint

Ophthalmic Nerve
Nerve Fibers
Optic Nerve
Growth
Eye Protective Devices
Choroid
Optic Nerve Injuries
Calcitonin Gene-Related Peptide
Myopia
Substance P
Birds

All Science Journal Classification (ASJC) codes

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Cite this

Influence of ophthalmic nerve fibers on choroidal blood flow and myopic eye growth in chicks. / Shih, Yung Feng; Fitzgerald, Malinda E.C.; Cuthbertson, Sherry L.; Reiner, Anton.

In: Experimental Eye Research, Vol. 69, No. 1, 01.01.1999, p. 9-20.

Research output: Contribution to journalArticle

Shih, Yung Feng ; Fitzgerald, Malinda E.C. ; Cuthbertson, Sherry L. ; Reiner, Anton. / Influence of ophthalmic nerve fibers on choroidal blood flow and myopic eye growth in chicks. In: Experimental Eye Research. 1999 ; Vol. 69, No. 1. pp. 9-20.
@article{1e9b6621598e42e3983dadcef9980755,
title = "Influence of ophthalmic nerve fibers on choroidal blood flow and myopic eye growth in chicks",
abstract = "Ophthalmic sensory nerve fibers containing substance P and calcitonin gene-related peptide' innervate the choroid in mammals and are known to vasodilate choroidal blood vessels. The avian choroid is also innervated by ophthalmic nerve fibers containing substance P and calcitonin gene-related peptide. The present studies were carried out to determine the influence of these sensory fibers on choroidal blood flow in birds and characterize their interaction with manipulations affecting eye growth. In these studies, ChBF was measured using laser Doppler flowmetry in both eyes in the following groups of birds: (1) normal chicks; (2) chicks with right optic nerve transected for 2 weeks; (3) chicks with right optic nerve transected and a goggle over the right eye for 2 weeks; and (4) chicks with right optic and ophthalmic nerves transected and a goggle over the right eye for 2 weeks. The eyes were refracted and various ocular dimensions measured after the blood-flow measurements. It was found that optic nerve transection reduced ChBF to 30{\%} of normal. Placing a goggle (which increases ocular temperature by 4°C) over an optic nerve transected eye nearly doubled choroidal blood flow over that in an optic nerve transected eye without a goggle. Additional transection of the ophthalmic nerve in a goggled optic nerve-transected eye, yielded choroidal blood flow that was indistinguishable from that in a nongoggled optic nerve-transected eye. Optic nerve transection had a slight stunting effect on axial growth of the eye. While myopic axial elongation was observed in goggled eyes with the optic nerve cut, the extent of myopia was less than in normal goggled eyes. Ophthalmic nerve transection further reduced the myopia induced by goggling in an optic nerve cut eye. These results suggest that ophthalmic nerve input to the choroid exerts a vasodilatory influence, which is activated in a goggled eye. This increased choroidal blood flow may be in response to elevated ocular temperatures caused by the goggling and this increase appears to be masked in goggled eyes with an intact optic nerve by the reduction in choroidal blood flow normally accompanying myopic eye growth. Our results thus show that the induction of myopic eye growth (as in our optic nerve cut eyes with a goggle) need not be accompanied by a decrease in choroidal blood flow from the baseline no-goggle condition (in this case, with the optic nerve cut).",
author = "Shih, {Yung Feng} and Fitzgerald, {Malinda E.C.} and Cuthbertson, {Sherry L.} and Anton Reiner",
year = "1999",
month = "1",
day = "1",
doi = "10.1006/exer.1999.0692",
language = "English (US)",
volume = "69",
pages = "9--20",
journal = "Experimental Eye Research",
issn = "0014-4835",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Influence of ophthalmic nerve fibers on choroidal blood flow and myopic eye growth in chicks

AU - Shih, Yung Feng

AU - Fitzgerald, Malinda E.C.

AU - Cuthbertson, Sherry L.

AU - Reiner, Anton

PY - 1999/1/1

Y1 - 1999/1/1

N2 - Ophthalmic sensory nerve fibers containing substance P and calcitonin gene-related peptide' innervate the choroid in mammals and are known to vasodilate choroidal blood vessels. The avian choroid is also innervated by ophthalmic nerve fibers containing substance P and calcitonin gene-related peptide. The present studies were carried out to determine the influence of these sensory fibers on choroidal blood flow in birds and characterize their interaction with manipulations affecting eye growth. In these studies, ChBF was measured using laser Doppler flowmetry in both eyes in the following groups of birds: (1) normal chicks; (2) chicks with right optic nerve transected for 2 weeks; (3) chicks with right optic nerve transected and a goggle over the right eye for 2 weeks; and (4) chicks with right optic and ophthalmic nerves transected and a goggle over the right eye for 2 weeks. The eyes were refracted and various ocular dimensions measured after the blood-flow measurements. It was found that optic nerve transection reduced ChBF to 30% of normal. Placing a goggle (which increases ocular temperature by 4°C) over an optic nerve transected eye nearly doubled choroidal blood flow over that in an optic nerve transected eye without a goggle. Additional transection of the ophthalmic nerve in a goggled optic nerve-transected eye, yielded choroidal blood flow that was indistinguishable from that in a nongoggled optic nerve-transected eye. Optic nerve transection had a slight stunting effect on axial growth of the eye. While myopic axial elongation was observed in goggled eyes with the optic nerve cut, the extent of myopia was less than in normal goggled eyes. Ophthalmic nerve transection further reduced the myopia induced by goggling in an optic nerve cut eye. These results suggest that ophthalmic nerve input to the choroid exerts a vasodilatory influence, which is activated in a goggled eye. This increased choroidal blood flow may be in response to elevated ocular temperatures caused by the goggling and this increase appears to be masked in goggled eyes with an intact optic nerve by the reduction in choroidal blood flow normally accompanying myopic eye growth. Our results thus show that the induction of myopic eye growth (as in our optic nerve cut eyes with a goggle) need not be accompanied by a decrease in choroidal blood flow from the baseline no-goggle condition (in this case, with the optic nerve cut).

AB - Ophthalmic sensory nerve fibers containing substance P and calcitonin gene-related peptide' innervate the choroid in mammals and are known to vasodilate choroidal blood vessels. The avian choroid is also innervated by ophthalmic nerve fibers containing substance P and calcitonin gene-related peptide. The present studies were carried out to determine the influence of these sensory fibers on choroidal blood flow in birds and characterize their interaction with manipulations affecting eye growth. In these studies, ChBF was measured using laser Doppler flowmetry in both eyes in the following groups of birds: (1) normal chicks; (2) chicks with right optic nerve transected for 2 weeks; (3) chicks with right optic nerve transected and a goggle over the right eye for 2 weeks; and (4) chicks with right optic and ophthalmic nerves transected and a goggle over the right eye for 2 weeks. The eyes were refracted and various ocular dimensions measured after the blood-flow measurements. It was found that optic nerve transection reduced ChBF to 30% of normal. Placing a goggle (which increases ocular temperature by 4°C) over an optic nerve transected eye nearly doubled choroidal blood flow over that in an optic nerve transected eye without a goggle. Additional transection of the ophthalmic nerve in a goggled optic nerve-transected eye, yielded choroidal blood flow that was indistinguishable from that in a nongoggled optic nerve-transected eye. Optic nerve transection had a slight stunting effect on axial growth of the eye. While myopic axial elongation was observed in goggled eyes with the optic nerve cut, the extent of myopia was less than in normal goggled eyes. Ophthalmic nerve transection further reduced the myopia induced by goggling in an optic nerve cut eye. These results suggest that ophthalmic nerve input to the choroid exerts a vasodilatory influence, which is activated in a goggled eye. This increased choroidal blood flow may be in response to elevated ocular temperatures caused by the goggling and this increase appears to be masked in goggled eyes with an intact optic nerve by the reduction in choroidal blood flow normally accompanying myopic eye growth. Our results thus show that the induction of myopic eye growth (as in our optic nerve cut eyes with a goggle) need not be accompanied by a decrease in choroidal blood flow from the baseline no-goggle condition (in this case, with the optic nerve cut).

UR - http://www.scopus.com/inward/record.url?scp=0032799598&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032799598&partnerID=8YFLogxK

U2 - 10.1006/exer.1999.0692

DO - 10.1006/exer.1999.0692

M3 - Article

VL - 69

SP - 9

EP - 20

JO - Experimental Eye Research

JF - Experimental Eye Research

SN - 0014-4835

IS - 1

ER -