Interleukin-1β increases expression and activity of matrix metalloproteinase-2 in cardiac microvascular endothelial cells: Role of PKCα/β1 and MAPKs

Deidra Mountain, Mahipal Singh, Bindu Menon, Krishna Singh

Research output: Contribution to journalArticle

61 Citations (Scopus)

Abstract

Matrix metalloproteinases (MMPs), a family of extracellular endopeptidases, are implicated in angiogenesis because of their ability to selectively degrade components of the extracellular matrix. Interleukin-1β (IL-1β), increased in the heart post-myocardial infarction (post-MI), plays a protective role in the pathophysiology of left ventricular (LV) remodeling following MI. Here we studied expression of various angiogenic genes affected by IL-1β in cardiac microvascular endothelial cells (CMECs) and investigated the signaling pathways involved in the regulation of MMP-2. cDNA array analysis of 96 angiogenesis-related genes indicated that IL-1β modulates the expression of numerous genes, notably increasing the expression of MMP-2, not MMP-9. RT-PCR and Western blot analyses confirmed increased expression of MMP-2 in response to IL-1β. Gelatin in-gel zymography and Biotrak activity assay demonstrated that IL-1β increases MMP-2 activity in the conditioned media. IL-1β activated ERK1/2, JNKs, and protein kinase C (PKC), specifically PKCα/β1, and inhibition of these cascades partially inhibited IL-1β-stimulated increases in MMP-2. Inhibition of PKCα/β1 failed to inhibit ERK1/2. However, concurrent inhibition of PKCα/β1 and ERK1/2 almost completely inhibited IL-1β-mediated increases in MMP-2 expression. Inhibition of p38 kinase and nuclear factor-κB (NF-κB) had no effect. Pretreatment with superoxide dismutase (SOD) mimetic, MnTMPyP, increased MMP-2 protein levels, whereas pretreatment with SOD and catalase mimetic, EUK134, partially inhibited IL-1β-stimulated increases in MMP-2 protein levels. Exogenous H2O2 significantly increased MMP-2 protein levels, whereas superoxide generation by xanthine/xanthine oxidase had no effect. This in vitro study suggests that IL-1β modulates expression and activity of MMP-2 in CMECs.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Cell Physiology
Volume292
Issue number2
DOIs
StatePublished - Feb 1 2007
Externally publishedYes

Fingerprint

Matrix Metalloproteinase 2
Interleukin-1
Protein Kinase C
Endothelial Cells
Superoxide Dismutase
MAP Kinase Kinase 4
Endopeptidases
Proteins
Ventricular Remodeling
Xanthine
Mitogen-Activated Protein Kinase 3
Xanthine Oxidase
Matrix Metalloproteinase 9
Gelatin
Conditioned Culture Medium
Oligonucleotide Array Sequence Analysis
Matrix Metalloproteinases
Superoxides
Catalase
Genes

All Science Journal Classification (ASJC) codes

  • Physiology
  • Cell Biology

Cite this

@article{168b3ab91c834807b60c5531c8209625,
title = "Interleukin-1β increases expression and activity of matrix metalloproteinase-2 in cardiac microvascular endothelial cells: Role of PKCα/β1 and MAPKs",
abstract = "Matrix metalloproteinases (MMPs), a family of extracellular endopeptidases, are implicated in angiogenesis because of their ability to selectively degrade components of the extracellular matrix. Interleukin-1β (IL-1β), increased in the heart post-myocardial infarction (post-MI), plays a protective role in the pathophysiology of left ventricular (LV) remodeling following MI. Here we studied expression of various angiogenic genes affected by IL-1β in cardiac microvascular endothelial cells (CMECs) and investigated the signaling pathways involved in the regulation of MMP-2. cDNA array analysis of 96 angiogenesis-related genes indicated that IL-1β modulates the expression of numerous genes, notably increasing the expression of MMP-2, not MMP-9. RT-PCR and Western blot analyses confirmed increased expression of MMP-2 in response to IL-1β. Gelatin in-gel zymography and Biotrak activity assay demonstrated that IL-1β increases MMP-2 activity in the conditioned media. IL-1β activated ERK1/2, JNKs, and protein kinase C (PKC), specifically PKCα/β1, and inhibition of these cascades partially inhibited IL-1β-stimulated increases in MMP-2. Inhibition of PKCα/β1 failed to inhibit ERK1/2. However, concurrent inhibition of PKCα/β1 and ERK1/2 almost completely inhibited IL-1β-mediated increases in MMP-2 expression. Inhibition of p38 kinase and nuclear factor-κB (NF-κB) had no effect. Pretreatment with superoxide dismutase (SOD) mimetic, MnTMPyP, increased MMP-2 protein levels, whereas pretreatment with SOD and catalase mimetic, EUK134, partially inhibited IL-1β-stimulated increases in MMP-2 protein levels. Exogenous H2O2 significantly increased MMP-2 protein levels, whereas superoxide generation by xanthine/xanthine oxidase had no effect. This in vitro study suggests that IL-1β modulates expression and activity of MMP-2 in CMECs.",
author = "Deidra Mountain and Mahipal Singh and Bindu Menon and Krishna Singh",
year = "2007",
month = "2",
day = "1",
doi = "10.1152/ajpcell.00161.2006",
language = "English (US)",
volume = "292",
journal = "American Journal of Physiology",
issn = "0363-6143",
publisher = "American Physiological Society",
number = "2",

}

TY - JOUR

T1 - Interleukin-1β increases expression and activity of matrix metalloproteinase-2 in cardiac microvascular endothelial cells

T2 - Role of PKCα/β1 and MAPKs

AU - Mountain, Deidra

AU - Singh, Mahipal

AU - Menon, Bindu

AU - Singh, Krishna

PY - 2007/2/1

Y1 - 2007/2/1

N2 - Matrix metalloproteinases (MMPs), a family of extracellular endopeptidases, are implicated in angiogenesis because of their ability to selectively degrade components of the extracellular matrix. Interleukin-1β (IL-1β), increased in the heart post-myocardial infarction (post-MI), plays a protective role in the pathophysiology of left ventricular (LV) remodeling following MI. Here we studied expression of various angiogenic genes affected by IL-1β in cardiac microvascular endothelial cells (CMECs) and investigated the signaling pathways involved in the regulation of MMP-2. cDNA array analysis of 96 angiogenesis-related genes indicated that IL-1β modulates the expression of numerous genes, notably increasing the expression of MMP-2, not MMP-9. RT-PCR and Western blot analyses confirmed increased expression of MMP-2 in response to IL-1β. Gelatin in-gel zymography and Biotrak activity assay demonstrated that IL-1β increases MMP-2 activity in the conditioned media. IL-1β activated ERK1/2, JNKs, and protein kinase C (PKC), specifically PKCα/β1, and inhibition of these cascades partially inhibited IL-1β-stimulated increases in MMP-2. Inhibition of PKCα/β1 failed to inhibit ERK1/2. However, concurrent inhibition of PKCα/β1 and ERK1/2 almost completely inhibited IL-1β-mediated increases in MMP-2 expression. Inhibition of p38 kinase and nuclear factor-κB (NF-κB) had no effect. Pretreatment with superoxide dismutase (SOD) mimetic, MnTMPyP, increased MMP-2 protein levels, whereas pretreatment with SOD and catalase mimetic, EUK134, partially inhibited IL-1β-stimulated increases in MMP-2 protein levels. Exogenous H2O2 significantly increased MMP-2 protein levels, whereas superoxide generation by xanthine/xanthine oxidase had no effect. This in vitro study suggests that IL-1β modulates expression and activity of MMP-2 in CMECs.

AB - Matrix metalloproteinases (MMPs), a family of extracellular endopeptidases, are implicated in angiogenesis because of their ability to selectively degrade components of the extracellular matrix. Interleukin-1β (IL-1β), increased in the heart post-myocardial infarction (post-MI), plays a protective role in the pathophysiology of left ventricular (LV) remodeling following MI. Here we studied expression of various angiogenic genes affected by IL-1β in cardiac microvascular endothelial cells (CMECs) and investigated the signaling pathways involved in the regulation of MMP-2. cDNA array analysis of 96 angiogenesis-related genes indicated that IL-1β modulates the expression of numerous genes, notably increasing the expression of MMP-2, not MMP-9. RT-PCR and Western blot analyses confirmed increased expression of MMP-2 in response to IL-1β. Gelatin in-gel zymography and Biotrak activity assay demonstrated that IL-1β increases MMP-2 activity in the conditioned media. IL-1β activated ERK1/2, JNKs, and protein kinase C (PKC), specifically PKCα/β1, and inhibition of these cascades partially inhibited IL-1β-stimulated increases in MMP-2. Inhibition of PKCα/β1 failed to inhibit ERK1/2. However, concurrent inhibition of PKCα/β1 and ERK1/2 almost completely inhibited IL-1β-mediated increases in MMP-2 expression. Inhibition of p38 kinase and nuclear factor-κB (NF-κB) had no effect. Pretreatment with superoxide dismutase (SOD) mimetic, MnTMPyP, increased MMP-2 protein levels, whereas pretreatment with SOD and catalase mimetic, EUK134, partially inhibited IL-1β-stimulated increases in MMP-2 protein levels. Exogenous H2O2 significantly increased MMP-2 protein levels, whereas superoxide generation by xanthine/xanthine oxidase had no effect. This in vitro study suggests that IL-1β modulates expression and activity of MMP-2 in CMECs.

UR - http://www.scopus.com/inward/record.url?scp=33847042684&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33847042684&partnerID=8YFLogxK

U2 - 10.1152/ajpcell.00161.2006

DO - 10.1152/ajpcell.00161.2006

M3 - Article

C2 - 16987994

AN - SCOPUS:33847042684

VL - 292

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0363-6143

IS - 2

ER -