Intra-medial prefrontal cortex injection of quinpirole, but not SKF 38393, blocks the acute motor-stimulant response to cocaine in the rat

C. E. Beyer, Jeffery Steketee

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

Rationale: Considerable evidence suggests that the medial prefrontal cortex (mPFC) is an important region in mediating certain behavioral and neurochemical responses to cocaine. However, a role for cortical dopamine (DA) receptor subtypes in modulating these responses has yet to be elucidated. Objectives: This study investigated the effects of intra-mPFC administration of DA agonists on the acute motor-stimulant response to cocaine. In addition, in vivo microdialysis techniques were employed to determine the effects of intracortical injection on cocaine-induced extracellular DA concentrations in the nucleus accumbens (NAC). Methods: One week following bilateral cannulae implantation over the mPFC and the NAC (for dialysis experiments), male Sprague-Dawley rats received an intra-mPFC injection of saline, the DA D2-like agonist quinpirole (0.015, 0.05, 0.15, 0.5, 1.5, or 5.0 nmol per side) or the partial DA D1-like agonist SKF 38393 (0.5, 1.5, or 5.0 nmol per side) approximately 5 min before peripheral administration of saline or cocaine (15 mg/kg, i.p.). For dialysis experiments, only the highest dose of quinpirole was examined. Results: Pretreatment with quinpirole produced a dose-dependent decrease in cocaine-induced motor activity, with the highest doses resulting in a complete abolition of the acute motor-stimulant response to cocaine. In contrast, intra-mPFC administration of SKF 38393 was not shown, at the doses tested, to alter cocaine-induced motor activity. In agreement with the behavioral effects, intra-mPFC quinpirole injection (5 nmol per side) significantly blocked cocaine-induced DA overflow in the NAC. Conclusions: The results of the present study provide additional support that the mPFC is a neural substrate through which cocaine, in part, produces its motor-stimulant effects. In addition, these data suggest that modulation of cortical DA D2 receptors can block acute cocaine-induced behavioral (locomotor activity) and neurochemical (DA concentrations in the NAC) responses in the rat.

Original languageEnglish (US)
Pages (from-to)211-218
Number of pages8
JournalPsychopharmacology
Volume151
Issue number2-3
DOIs
StatePublished - Jan 1 2000
Externally publishedYes

Fingerprint

2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine
Quinpirole
Prefrontal Cortex
Cocaine
Injections
Nucleus Accumbens
Dopamine
Dialysis
Motor Activity
Dopamine D2 Receptors
Dopamine Agonists
Microdialysis
Dopamine Receptors
Locomotion
Sprague Dawley Rats

All Science Journal Classification (ASJC) codes

  • Pharmacology

Cite this

@article{34799662c4af4a43adf72fd42d5748f9,
title = "Intra-medial prefrontal cortex injection of quinpirole, but not SKF 38393, blocks the acute motor-stimulant response to cocaine in the rat",
abstract = "Rationale: Considerable evidence suggests that the medial prefrontal cortex (mPFC) is an important region in mediating certain behavioral and neurochemical responses to cocaine. However, a role for cortical dopamine (DA) receptor subtypes in modulating these responses has yet to be elucidated. Objectives: This study investigated the effects of intra-mPFC administration of DA agonists on the acute motor-stimulant response to cocaine. In addition, in vivo microdialysis techniques were employed to determine the effects of intracortical injection on cocaine-induced extracellular DA concentrations in the nucleus accumbens (NAC). Methods: One week following bilateral cannulae implantation over the mPFC and the NAC (for dialysis experiments), male Sprague-Dawley rats received an intra-mPFC injection of saline, the DA D2-like agonist quinpirole (0.015, 0.05, 0.15, 0.5, 1.5, or 5.0 nmol per side) or the partial DA D1-like agonist SKF 38393 (0.5, 1.5, or 5.0 nmol per side) approximately 5 min before peripheral administration of saline or cocaine (15 mg/kg, i.p.). For dialysis experiments, only the highest dose of quinpirole was examined. Results: Pretreatment with quinpirole produced a dose-dependent decrease in cocaine-induced motor activity, with the highest doses resulting in a complete abolition of the acute motor-stimulant response to cocaine. In contrast, intra-mPFC administration of SKF 38393 was not shown, at the doses tested, to alter cocaine-induced motor activity. In agreement with the behavioral effects, intra-mPFC quinpirole injection (5 nmol per side) significantly blocked cocaine-induced DA overflow in the NAC. Conclusions: The results of the present study provide additional support that the mPFC is a neural substrate through which cocaine, in part, produces its motor-stimulant effects. In addition, these data suggest that modulation of cortical DA D2 receptors can block acute cocaine-induced behavioral (locomotor activity) and neurochemical (DA concentrations in the NAC) responses in the rat.",
author = "Beyer, {C. E.} and Jeffery Steketee",
year = "2000",
month = "1",
day = "1",
doi = "10.1007/s002139900345",
language = "English (US)",
volume = "151",
pages = "211--218",
journal = "Psychopharmacology",
issn = "0033-3158",
publisher = "Springer Verlag",
number = "2-3",

}

TY - JOUR

T1 - Intra-medial prefrontal cortex injection of quinpirole, but not SKF 38393, blocks the acute motor-stimulant response to cocaine in the rat

AU - Beyer, C. E.

AU - Steketee, Jeffery

PY - 2000/1/1

Y1 - 2000/1/1

N2 - Rationale: Considerable evidence suggests that the medial prefrontal cortex (mPFC) is an important region in mediating certain behavioral and neurochemical responses to cocaine. However, a role for cortical dopamine (DA) receptor subtypes in modulating these responses has yet to be elucidated. Objectives: This study investigated the effects of intra-mPFC administration of DA agonists on the acute motor-stimulant response to cocaine. In addition, in vivo microdialysis techniques were employed to determine the effects of intracortical injection on cocaine-induced extracellular DA concentrations in the nucleus accumbens (NAC). Methods: One week following bilateral cannulae implantation over the mPFC and the NAC (for dialysis experiments), male Sprague-Dawley rats received an intra-mPFC injection of saline, the DA D2-like agonist quinpirole (0.015, 0.05, 0.15, 0.5, 1.5, or 5.0 nmol per side) or the partial DA D1-like agonist SKF 38393 (0.5, 1.5, or 5.0 nmol per side) approximately 5 min before peripheral administration of saline or cocaine (15 mg/kg, i.p.). For dialysis experiments, only the highest dose of quinpirole was examined. Results: Pretreatment with quinpirole produced a dose-dependent decrease in cocaine-induced motor activity, with the highest doses resulting in a complete abolition of the acute motor-stimulant response to cocaine. In contrast, intra-mPFC administration of SKF 38393 was not shown, at the doses tested, to alter cocaine-induced motor activity. In agreement with the behavioral effects, intra-mPFC quinpirole injection (5 nmol per side) significantly blocked cocaine-induced DA overflow in the NAC. Conclusions: The results of the present study provide additional support that the mPFC is a neural substrate through which cocaine, in part, produces its motor-stimulant effects. In addition, these data suggest that modulation of cortical DA D2 receptors can block acute cocaine-induced behavioral (locomotor activity) and neurochemical (DA concentrations in the NAC) responses in the rat.

AB - Rationale: Considerable evidence suggests that the medial prefrontal cortex (mPFC) is an important region in mediating certain behavioral and neurochemical responses to cocaine. However, a role for cortical dopamine (DA) receptor subtypes in modulating these responses has yet to be elucidated. Objectives: This study investigated the effects of intra-mPFC administration of DA agonists on the acute motor-stimulant response to cocaine. In addition, in vivo microdialysis techniques were employed to determine the effects of intracortical injection on cocaine-induced extracellular DA concentrations in the nucleus accumbens (NAC). Methods: One week following bilateral cannulae implantation over the mPFC and the NAC (for dialysis experiments), male Sprague-Dawley rats received an intra-mPFC injection of saline, the DA D2-like agonist quinpirole (0.015, 0.05, 0.15, 0.5, 1.5, or 5.0 nmol per side) or the partial DA D1-like agonist SKF 38393 (0.5, 1.5, or 5.0 nmol per side) approximately 5 min before peripheral administration of saline or cocaine (15 mg/kg, i.p.). For dialysis experiments, only the highest dose of quinpirole was examined. Results: Pretreatment with quinpirole produced a dose-dependent decrease in cocaine-induced motor activity, with the highest doses resulting in a complete abolition of the acute motor-stimulant response to cocaine. In contrast, intra-mPFC administration of SKF 38393 was not shown, at the doses tested, to alter cocaine-induced motor activity. In agreement with the behavioral effects, intra-mPFC quinpirole injection (5 nmol per side) significantly blocked cocaine-induced DA overflow in the NAC. Conclusions: The results of the present study provide additional support that the mPFC is a neural substrate through which cocaine, in part, produces its motor-stimulant effects. In addition, these data suggest that modulation of cortical DA D2 receptors can block acute cocaine-induced behavioral (locomotor activity) and neurochemical (DA concentrations in the NAC) responses in the rat.

UR - http://www.scopus.com/inward/record.url?scp=0033847266&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033847266&partnerID=8YFLogxK

U2 - 10.1007/s002139900345

DO - 10.1007/s002139900345

M3 - Article

VL - 151

SP - 211

EP - 218

JO - Psychopharmacology

JF - Psychopharmacology

SN - 0033-3158

IS - 2-3

ER -