Iris transillumination defect and its gene modulators do not correlate with intraocular pressure in the BXD family of mice

Hong Lu, Hong Lu, Lu Lu, Lu Lu, Robert Williams, Monica Jablonski

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Purpose: Intraocular pressure (IOP) is currently the only treatable phenotype associated with primary open angle glaucoma (POAG). Our group has developed the BXD murine panel for identifying genetic modulators of the various endophenotypes of glaucoma, including pigment dispersion, IOP, and retinal ganglion cell (RGC) death. The BXD family consists of the inbred progeny of crosses between the C57BL/6J (B6) strain and the glaucoma-prone DBA/2J (D2) strain that has mutations in Tyrp1 and Gpnmb. The role of these genes in the iris transillumination defect (TID) has been well documented; however, their possible roles in modulating IOP during glaucoma onset and progression are yet not well understood. Methods: We used the IOP data sets and the Eye M430v2 (Sep08) RMA Database available on GeneNetwork to determine whether mutations in Tyrp1 and Gpnmb or TIDs have a direct role in the elevation of IOP in the BXD family. We also determined whether TIDs and IOP are coregulated. Results: As expected, Tyrp1 and Gpnmb expression levels showed a high degree of correlation with TIDs. However, there was no correlation between the expression of these genes and IOP. Moreover, unlike TIDs, IOP did not map to either the Tyrp1 or Gpnmb locus. Although the Tyrp1 and Gpnmb mutations in BXD strains are a prerequisite for the development of TID, they are not required for or associated with elevated IOP. Conclusions: Genetic modulators of IOP thus may be independently identified using the full array of BXD mice without concern for the presence of TIDs or mutations in Typr1 and/or Gpnmb.

Original languageEnglish (US)
Pages (from-to)224-233
Number of pages10
JournalMolecular vision
Volume22
StatePublished - Mar 4 2016

Fingerprint

Transillumination
Iris
Intraocular Pressure
Genes
Glaucoma
Mutation
Endophenotypes
Retinal Ganglion Cells
Cell Death
Databases

All Science Journal Classification (ASJC) codes

  • Ophthalmology

Cite this

@article{f99c20aa86c746b4946b14013e1f43c9,
title = "Iris transillumination defect and its gene modulators do not correlate with intraocular pressure in the BXD family of mice",
abstract = "Purpose: Intraocular pressure (IOP) is currently the only treatable phenotype associated with primary open angle glaucoma (POAG). Our group has developed the BXD murine panel for identifying genetic modulators of the various endophenotypes of glaucoma, including pigment dispersion, IOP, and retinal ganglion cell (RGC) death. The BXD family consists of the inbred progeny of crosses between the C57BL/6J (B6) strain and the glaucoma-prone DBA/2J (D2) strain that has mutations in Tyrp1 and Gpnmb. The role of these genes in the iris transillumination defect (TID) has been well documented; however, their possible roles in modulating IOP during glaucoma onset and progression are yet not well understood. Methods: We used the IOP data sets and the Eye M430v2 (Sep08) RMA Database available on GeneNetwork to determine whether mutations in Tyrp1 and Gpnmb or TIDs have a direct role in the elevation of IOP in the BXD family. We also determined whether TIDs and IOP are coregulated. Results: As expected, Tyrp1 and Gpnmb expression levels showed a high degree of correlation with TIDs. However, there was no correlation between the expression of these genes and IOP. Moreover, unlike TIDs, IOP did not map to either the Tyrp1 or Gpnmb locus. Although the Tyrp1 and Gpnmb mutations in BXD strains are a prerequisite for the development of TID, they are not required for or associated with elevated IOP. Conclusions: Genetic modulators of IOP thus may be independently identified using the full array of BXD mice without concern for the presence of TIDs or mutations in Typr1 and/or Gpnmb.",
author = "Hong Lu and Hong Lu and Lu Lu and Lu Lu and Robert Williams and Monica Jablonski",
year = "2016",
month = "3",
day = "4",
language = "English (US)",
volume = "22",
pages = "224--233",
journal = "Molecular Vision",
issn = "1090-0535",

}

TY - JOUR

T1 - Iris transillumination defect and its gene modulators do not correlate with intraocular pressure in the BXD family of mice

AU - Lu, Hong

AU - Lu, Hong

AU - Lu, Lu

AU - Lu, Lu

AU - Williams, Robert

AU - Jablonski, Monica

PY - 2016/3/4

Y1 - 2016/3/4

N2 - Purpose: Intraocular pressure (IOP) is currently the only treatable phenotype associated with primary open angle glaucoma (POAG). Our group has developed the BXD murine panel for identifying genetic modulators of the various endophenotypes of glaucoma, including pigment dispersion, IOP, and retinal ganglion cell (RGC) death. The BXD family consists of the inbred progeny of crosses between the C57BL/6J (B6) strain and the glaucoma-prone DBA/2J (D2) strain that has mutations in Tyrp1 and Gpnmb. The role of these genes in the iris transillumination defect (TID) has been well documented; however, their possible roles in modulating IOP during glaucoma onset and progression are yet not well understood. Methods: We used the IOP data sets and the Eye M430v2 (Sep08) RMA Database available on GeneNetwork to determine whether mutations in Tyrp1 and Gpnmb or TIDs have a direct role in the elevation of IOP in the BXD family. We also determined whether TIDs and IOP are coregulated. Results: As expected, Tyrp1 and Gpnmb expression levels showed a high degree of correlation with TIDs. However, there was no correlation between the expression of these genes and IOP. Moreover, unlike TIDs, IOP did not map to either the Tyrp1 or Gpnmb locus. Although the Tyrp1 and Gpnmb mutations in BXD strains are a prerequisite for the development of TID, they are not required for or associated with elevated IOP. Conclusions: Genetic modulators of IOP thus may be independently identified using the full array of BXD mice without concern for the presence of TIDs or mutations in Typr1 and/or Gpnmb.

AB - Purpose: Intraocular pressure (IOP) is currently the only treatable phenotype associated with primary open angle glaucoma (POAG). Our group has developed the BXD murine panel for identifying genetic modulators of the various endophenotypes of glaucoma, including pigment dispersion, IOP, and retinal ganglion cell (RGC) death. The BXD family consists of the inbred progeny of crosses between the C57BL/6J (B6) strain and the glaucoma-prone DBA/2J (D2) strain that has mutations in Tyrp1 and Gpnmb. The role of these genes in the iris transillumination defect (TID) has been well documented; however, their possible roles in modulating IOP during glaucoma onset and progression are yet not well understood. Methods: We used the IOP data sets and the Eye M430v2 (Sep08) RMA Database available on GeneNetwork to determine whether mutations in Tyrp1 and Gpnmb or TIDs have a direct role in the elevation of IOP in the BXD family. We also determined whether TIDs and IOP are coregulated. Results: As expected, Tyrp1 and Gpnmb expression levels showed a high degree of correlation with TIDs. However, there was no correlation between the expression of these genes and IOP. Moreover, unlike TIDs, IOP did not map to either the Tyrp1 or Gpnmb locus. Although the Tyrp1 and Gpnmb mutations in BXD strains are a prerequisite for the development of TID, they are not required for or associated with elevated IOP. Conclusions: Genetic modulators of IOP thus may be independently identified using the full array of BXD mice without concern for the presence of TIDs or mutations in Typr1 and/or Gpnmb.

UR - http://www.scopus.com/inward/record.url?scp=84960357166&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84960357166&partnerID=8YFLogxK

M3 - Article

VL - 22

SP - 224

EP - 233

JO - Molecular Vision

JF - Molecular Vision

SN - 1090-0535

ER -