Light and electron microscopic immunohistochemical study of dopaminergic terminals in the striatal portion of the pigeon basal ganglia using antisera against tyrosine hydroxylase and dopamine

Ellen J. Karle, Keith D. Anderson, Loreta Medina, Anton Reiner

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

A dopaminergic projection from the midbrain to the striatal portion of the basal ganglia is present in reptiles, birds, and mammals. Although the ultrastructure of these fibers and terminals within the striatum has been studied extensively in mammals, little information is available on the ultrastructure of this projection in nonmammals. In the present study, we used immunohistochemical labeling with antibodies against tyrosine hydroxylase (TH) or dopamine (DA) to study the dopaminergic input to the striatal portion of the basal ganglia in pigeons (i.e., lobus parolfactorius and paleostriatum augmentatum). At the light microscopic level, the anti-TH and anti-DA revealed a similar abundance and distribution of numerous labeled fine fibers and varicosities within the striatum. In contrast, the use of an antidopamine beta-hydroxylase antiserum (which labels only adrenergic and noradrenergic terminals) labeled very few striatal fibers, which were restricted to visceral striatum. These results demonstrate that anti-TH mainly labels dopaminergic terminals in the striatum. At the electron microscopic level, the anti-TH and anti-DA antisera labeled numerous axon terminals within the striatum (15-20% of all striatal terminals). These terminals tended to be small (with an average length of 0.6 μm) and flattened, and their vesicles tended to be small (35-60 nm in diameter) and pleomorphic. About 50% of the terminals were observed to make synaptic contacts in the planes of section examined, and nearly all of these synaptic contacts were symmetric. Both TH+ and DA+ terminals typically contacted dendritic shafts or the necks of dendritic spines, but a few contacted perikarya. No clear differences were observed between TH+ and DA+ terminals within medial striatum (whose neurons project to the nigra in birds) or between TH+ and DA+ terminals within lateral striatum (whose neurons project to the pallidum in birds). In addition, no differences were observed between medial and lateral striata in either TH+ or DA+ terminals. Thus, there is no evident difference in pigeons between striatonigral and striatopallidal neurons in their dopaminergic innervation. Our results also indicate that the abundance, ultrastructural characteristics, and postsynaptic targets of the midbrain dopaminergic input to the pigeon striatum are highly similar to those in mammals. This anatomical similarity is consistent with the pharmacologically demonstrable similarity in the role of the dopaminergic input to the striatum in birds and mammals.

Original languageEnglish (US)
Pages (from-to)109-124
Number of pages16
JournalJournal of Comparative Neurology
Volume369
Issue number1
DOIs
StatePublished - May 20 1996

Fingerprint

Corpus Striatum
Columbidae
Tyrosine 3-Monooxygenase
Basal Ganglia
Immune Sera
Dopamine
Electrons
Light
Birds
Mammals
Globus Pallidus
Mesencephalon
Neurons
Dendritic Spines
Reptiles
Presynaptic Terminals
Mixed Function Oxygenases
Adrenergic Agents
Antibodies

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Cite this

@article{250c1e55c41c4d749c0709e75a4deedb,
title = "Light and electron microscopic immunohistochemical study of dopaminergic terminals in the striatal portion of the pigeon basal ganglia using antisera against tyrosine hydroxylase and dopamine",
abstract = "A dopaminergic projection from the midbrain to the striatal portion of the basal ganglia is present in reptiles, birds, and mammals. Although the ultrastructure of these fibers and terminals within the striatum has been studied extensively in mammals, little information is available on the ultrastructure of this projection in nonmammals. In the present study, we used immunohistochemical labeling with antibodies against tyrosine hydroxylase (TH) or dopamine (DA) to study the dopaminergic input to the striatal portion of the basal ganglia in pigeons (i.e., lobus parolfactorius and paleostriatum augmentatum). At the light microscopic level, the anti-TH and anti-DA revealed a similar abundance and distribution of numerous labeled fine fibers and varicosities within the striatum. In contrast, the use of an antidopamine beta-hydroxylase antiserum (which labels only adrenergic and noradrenergic terminals) labeled very few striatal fibers, which were restricted to visceral striatum. These results demonstrate that anti-TH mainly labels dopaminergic terminals in the striatum. At the electron microscopic level, the anti-TH and anti-DA antisera labeled numerous axon terminals within the striatum (15-20{\%} of all striatal terminals). These terminals tended to be small (with an average length of 0.6 μm) and flattened, and their vesicles tended to be small (35-60 nm in diameter) and pleomorphic. About 50{\%} of the terminals were observed to make synaptic contacts in the planes of section examined, and nearly all of these synaptic contacts were symmetric. Both TH+ and DA+ terminals typically contacted dendritic shafts or the necks of dendritic spines, but a few contacted perikarya. No clear differences were observed between TH+ and DA+ terminals within medial striatum (whose neurons project to the nigra in birds) or between TH+ and DA+ terminals within lateral striatum (whose neurons project to the pallidum in birds). In addition, no differences were observed between medial and lateral striata in either TH+ or DA+ terminals. Thus, there is no evident difference in pigeons between striatonigral and striatopallidal neurons in their dopaminergic innervation. Our results also indicate that the abundance, ultrastructural characteristics, and postsynaptic targets of the midbrain dopaminergic input to the pigeon striatum are highly similar to those in mammals. This anatomical similarity is consistent with the pharmacologically demonstrable similarity in the role of the dopaminergic input to the striatum in birds and mammals.",
author = "Karle, {Ellen J.} and Anderson, {Keith D.} and Loreta Medina and Anton Reiner",
year = "1996",
month = "5",
day = "20",
doi = "10.1002/(SICI)1096-9861(19960520)369:1<109::AID-CNE8>3.0.CO;2-7",
language = "English (US)",
volume = "369",
pages = "109--124",
journal = "Journal of Comparative Neurology",
issn = "0021-9967",
publisher = "Wiley-Liss Inc.",
number = "1",

}

TY - JOUR

T1 - Light and electron microscopic immunohistochemical study of dopaminergic terminals in the striatal portion of the pigeon basal ganglia using antisera against tyrosine hydroxylase and dopamine

AU - Karle, Ellen J.

AU - Anderson, Keith D.

AU - Medina, Loreta

AU - Reiner, Anton

PY - 1996/5/20

Y1 - 1996/5/20

N2 - A dopaminergic projection from the midbrain to the striatal portion of the basal ganglia is present in reptiles, birds, and mammals. Although the ultrastructure of these fibers and terminals within the striatum has been studied extensively in mammals, little information is available on the ultrastructure of this projection in nonmammals. In the present study, we used immunohistochemical labeling with antibodies against tyrosine hydroxylase (TH) or dopamine (DA) to study the dopaminergic input to the striatal portion of the basal ganglia in pigeons (i.e., lobus parolfactorius and paleostriatum augmentatum). At the light microscopic level, the anti-TH and anti-DA revealed a similar abundance and distribution of numerous labeled fine fibers and varicosities within the striatum. In contrast, the use of an antidopamine beta-hydroxylase antiserum (which labels only adrenergic and noradrenergic terminals) labeled very few striatal fibers, which were restricted to visceral striatum. These results demonstrate that anti-TH mainly labels dopaminergic terminals in the striatum. At the electron microscopic level, the anti-TH and anti-DA antisera labeled numerous axon terminals within the striatum (15-20% of all striatal terminals). These terminals tended to be small (with an average length of 0.6 μm) and flattened, and their vesicles tended to be small (35-60 nm in diameter) and pleomorphic. About 50% of the terminals were observed to make synaptic contacts in the planes of section examined, and nearly all of these synaptic contacts were symmetric. Both TH+ and DA+ terminals typically contacted dendritic shafts or the necks of dendritic spines, but a few contacted perikarya. No clear differences were observed between TH+ and DA+ terminals within medial striatum (whose neurons project to the nigra in birds) or between TH+ and DA+ terminals within lateral striatum (whose neurons project to the pallidum in birds). In addition, no differences were observed between medial and lateral striata in either TH+ or DA+ terminals. Thus, there is no evident difference in pigeons between striatonigral and striatopallidal neurons in their dopaminergic innervation. Our results also indicate that the abundance, ultrastructural characteristics, and postsynaptic targets of the midbrain dopaminergic input to the pigeon striatum are highly similar to those in mammals. This anatomical similarity is consistent with the pharmacologically demonstrable similarity in the role of the dopaminergic input to the striatum in birds and mammals.

AB - A dopaminergic projection from the midbrain to the striatal portion of the basal ganglia is present in reptiles, birds, and mammals. Although the ultrastructure of these fibers and terminals within the striatum has been studied extensively in mammals, little information is available on the ultrastructure of this projection in nonmammals. In the present study, we used immunohistochemical labeling with antibodies against tyrosine hydroxylase (TH) or dopamine (DA) to study the dopaminergic input to the striatal portion of the basal ganglia in pigeons (i.e., lobus parolfactorius and paleostriatum augmentatum). At the light microscopic level, the anti-TH and anti-DA revealed a similar abundance and distribution of numerous labeled fine fibers and varicosities within the striatum. In contrast, the use of an antidopamine beta-hydroxylase antiserum (which labels only adrenergic and noradrenergic terminals) labeled very few striatal fibers, which were restricted to visceral striatum. These results demonstrate that anti-TH mainly labels dopaminergic terminals in the striatum. At the electron microscopic level, the anti-TH and anti-DA antisera labeled numerous axon terminals within the striatum (15-20% of all striatal terminals). These terminals tended to be small (with an average length of 0.6 μm) and flattened, and their vesicles tended to be small (35-60 nm in diameter) and pleomorphic. About 50% of the terminals were observed to make synaptic contacts in the planes of section examined, and nearly all of these synaptic contacts were symmetric. Both TH+ and DA+ terminals typically contacted dendritic shafts or the necks of dendritic spines, but a few contacted perikarya. No clear differences were observed between TH+ and DA+ terminals within medial striatum (whose neurons project to the nigra in birds) or between TH+ and DA+ terminals within lateral striatum (whose neurons project to the pallidum in birds). In addition, no differences were observed between medial and lateral striata in either TH+ or DA+ terminals. Thus, there is no evident difference in pigeons between striatonigral and striatopallidal neurons in their dopaminergic innervation. Our results also indicate that the abundance, ultrastructural characteristics, and postsynaptic targets of the midbrain dopaminergic input to the pigeon striatum are highly similar to those in mammals. This anatomical similarity is consistent with the pharmacologically demonstrable similarity in the role of the dopaminergic input to the striatum in birds and mammals.

UR - http://www.scopus.com/inward/record.url?scp=0029887689&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029887689&partnerID=8YFLogxK

U2 - 10.1002/(SICI)1096-9861(19960520)369:1<109::AID-CNE8>3.0.CO;2-7

DO - 10.1002/(SICI)1096-9861(19960520)369:1<109::AID-CNE8>3.0.CO;2-7

M3 - Article

VL - 369

SP - 109

EP - 124

JO - Journal of Comparative Neurology

JF - Journal of Comparative Neurology

SN - 0021-9967

IS - 1

ER -