Lopinavir inhibits meningioma cell proliferation by Akt independent mechanism

Mahlon Johnson, Mary O'Connell, Webster Pilcher

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Recent studies suggest that HIV-1 protease inhibitors may have anti-neoplastic effects on some malignancies. The anti-neoplastic effects of lopinavir have not been established or studied in brain tumors. Primary cultures of three fetal leptomeninges and 18 meningiomas were treated with lopinavir alone or with PDGF-BB. DNA synthesis was assessed by CyQUANT. Lopinavir effects on basal and PDGF-stimulated phosphorylation of the Akt-mTOR, MEK1/2-MAPK and STAT3 pathways, phosphorylation of Rb, Caspase 3 activation and reductions in survivin were assessed by Western blots. Lopinavir produced a significant reduction in PDGF-BB stimulation of DNA synthesis in a leptomeningeal culture (P = 0.0013) and 1 of 6 WHO grade I and 1 of 4 grade II meningiomas at 24 h and in 3 of 6 WHO grade I, 4 of 4 grade II and 1 of 1 grade III cell cultures (P = 0.0001) at 72 h. Lopinavir reduced PDGF-BB stimulation of phosphorylation/ activation of MAPK in the 22 week fetal leptomeningeal cell cultures and in cells from 1 grade I meningioma at 24 h, but in none of 4 grade I and 5 grade II meningiomas at 6 h. Lopinavir had no notable effect on basal or PDGF-stimulated p-mTOR, p-MEK1/2, or p-STAT3, activation of Caspase 3 or survivin levels. Lopinavir treatment for 24 h had no effect on basal Rb phosphorylation but reduced Rb phosphorylation in all four meningioma cultures. These studies suggest that lopinavir may inhibit meningioma growth, and does so in part by cell cycle arrest. Additional evaluation of lopinavir as a potential adjunct chemotherapy is warranted.

Original languageEnglish (US)
Pages (from-to)441-448
Number of pages8
JournalJournal of Neuro-Oncology
Volume101
Issue number3
DOIs
StatePublished - Feb 1 2011

Fingerprint

Lopinavir
Meningioma
Cell Proliferation
Phosphorylation
Caspase 3
Cell Culture Techniques
HIV Protease Inhibitors
DNA
Cell Cycle Checkpoints
Brain Neoplasms
Western Blotting
Drug Therapy

All Science Journal Classification (ASJC) codes

  • Oncology
  • Neurology
  • Clinical Neurology
  • Cancer Research

Cite this

Lopinavir inhibits meningioma cell proliferation by Akt independent mechanism. / Johnson, Mahlon; O'Connell, Mary; Pilcher, Webster.

In: Journal of Neuro-Oncology, Vol. 101, No. 3, 01.02.2011, p. 441-448.

Research output: Contribution to journalArticle

Johnson, Mahlon ; O'Connell, Mary ; Pilcher, Webster. / Lopinavir inhibits meningioma cell proliferation by Akt independent mechanism. In: Journal of Neuro-Oncology. 2011 ; Vol. 101, No. 3. pp. 441-448.
@article{c616244c8cf743aeb3923626f8f8bf3f,
title = "Lopinavir inhibits meningioma cell proliferation by Akt independent mechanism",
abstract = "Recent studies suggest that HIV-1 protease inhibitors may have anti-neoplastic effects on some malignancies. The anti-neoplastic effects of lopinavir have not been established or studied in brain tumors. Primary cultures of three fetal leptomeninges and 18 meningiomas were treated with lopinavir alone or with PDGF-BB. DNA synthesis was assessed by CyQUANT. Lopinavir effects on basal and PDGF-stimulated phosphorylation of the Akt-mTOR, MEK1/2-MAPK and STAT3 pathways, phosphorylation of Rb, Caspase 3 activation and reductions in survivin were assessed by Western blots. Lopinavir produced a significant reduction in PDGF-BB stimulation of DNA synthesis in a leptomeningeal culture (P = 0.0013) and 1 of 6 WHO grade I and 1 of 4 grade II meningiomas at 24 h and in 3 of 6 WHO grade I, 4 of 4 grade II and 1 of 1 grade III cell cultures (P = 0.0001) at 72 h. Lopinavir reduced PDGF-BB stimulation of phosphorylation/ activation of MAPK in the 22 week fetal leptomeningeal cell cultures and in cells from 1 grade I meningioma at 24 h, but in none of 4 grade I and 5 grade II meningiomas at 6 h. Lopinavir had no notable effect on basal or PDGF-stimulated p-mTOR, p-MEK1/2, or p-STAT3, activation of Caspase 3 or survivin levels. Lopinavir treatment for 24 h had no effect on basal Rb phosphorylation but reduced Rb phosphorylation in all four meningioma cultures. These studies suggest that lopinavir may inhibit meningioma growth, and does so in part by cell cycle arrest. Additional evaluation of lopinavir as a potential adjunct chemotherapy is warranted.",
author = "Mahlon Johnson and Mary O'Connell and Webster Pilcher",
year = "2011",
month = "2",
day = "1",
doi = "10.1007/s11060-010-0281-y",
language = "English (US)",
volume = "101",
pages = "441--448",
journal = "Journal of Neuro-Oncology",
issn = "0167-594X",
publisher = "Kluwer Academic Publishers",
number = "3",

}

TY - JOUR

T1 - Lopinavir inhibits meningioma cell proliferation by Akt independent mechanism

AU - Johnson, Mahlon

AU - O'Connell, Mary

AU - Pilcher, Webster

PY - 2011/2/1

Y1 - 2011/2/1

N2 - Recent studies suggest that HIV-1 protease inhibitors may have anti-neoplastic effects on some malignancies. The anti-neoplastic effects of lopinavir have not been established or studied in brain tumors. Primary cultures of three fetal leptomeninges and 18 meningiomas were treated with lopinavir alone or with PDGF-BB. DNA synthesis was assessed by CyQUANT. Lopinavir effects on basal and PDGF-stimulated phosphorylation of the Akt-mTOR, MEK1/2-MAPK and STAT3 pathways, phosphorylation of Rb, Caspase 3 activation and reductions in survivin were assessed by Western blots. Lopinavir produced a significant reduction in PDGF-BB stimulation of DNA synthesis in a leptomeningeal culture (P = 0.0013) and 1 of 6 WHO grade I and 1 of 4 grade II meningiomas at 24 h and in 3 of 6 WHO grade I, 4 of 4 grade II and 1 of 1 grade III cell cultures (P = 0.0001) at 72 h. Lopinavir reduced PDGF-BB stimulation of phosphorylation/ activation of MAPK in the 22 week fetal leptomeningeal cell cultures and in cells from 1 grade I meningioma at 24 h, but in none of 4 grade I and 5 grade II meningiomas at 6 h. Lopinavir had no notable effect on basal or PDGF-stimulated p-mTOR, p-MEK1/2, or p-STAT3, activation of Caspase 3 or survivin levels. Lopinavir treatment for 24 h had no effect on basal Rb phosphorylation but reduced Rb phosphorylation in all four meningioma cultures. These studies suggest that lopinavir may inhibit meningioma growth, and does so in part by cell cycle arrest. Additional evaluation of lopinavir as a potential adjunct chemotherapy is warranted.

AB - Recent studies suggest that HIV-1 protease inhibitors may have anti-neoplastic effects on some malignancies. The anti-neoplastic effects of lopinavir have not been established or studied in brain tumors. Primary cultures of three fetal leptomeninges and 18 meningiomas were treated with lopinavir alone or with PDGF-BB. DNA synthesis was assessed by CyQUANT. Lopinavir effects on basal and PDGF-stimulated phosphorylation of the Akt-mTOR, MEK1/2-MAPK and STAT3 pathways, phosphorylation of Rb, Caspase 3 activation and reductions in survivin were assessed by Western blots. Lopinavir produced a significant reduction in PDGF-BB stimulation of DNA synthesis in a leptomeningeal culture (P = 0.0013) and 1 of 6 WHO grade I and 1 of 4 grade II meningiomas at 24 h and in 3 of 6 WHO grade I, 4 of 4 grade II and 1 of 1 grade III cell cultures (P = 0.0001) at 72 h. Lopinavir reduced PDGF-BB stimulation of phosphorylation/ activation of MAPK in the 22 week fetal leptomeningeal cell cultures and in cells from 1 grade I meningioma at 24 h, but in none of 4 grade I and 5 grade II meningiomas at 6 h. Lopinavir had no notable effect on basal or PDGF-stimulated p-mTOR, p-MEK1/2, or p-STAT3, activation of Caspase 3 or survivin levels. Lopinavir treatment for 24 h had no effect on basal Rb phosphorylation but reduced Rb phosphorylation in all four meningioma cultures. These studies suggest that lopinavir may inhibit meningioma growth, and does so in part by cell cycle arrest. Additional evaluation of lopinavir as a potential adjunct chemotherapy is warranted.

UR - http://www.scopus.com/inward/record.url?scp=79952194015&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79952194015&partnerID=8YFLogxK

U2 - 10.1007/s11060-010-0281-y

DO - 10.1007/s11060-010-0281-y

M3 - Article

VL - 101

SP - 441

EP - 448

JO - Journal of Neuro-Oncology

JF - Journal of Neuro-Oncology

SN - 0167-594X

IS - 3

ER -