M2 muscarinic autoreceptors modulate acetylcholine release in the medial pontine reticular formation1

Research output: Contribution to journalArticle

72 Citations (Scopus)

Abstract

Muscarinic autoreceptors regulate acetylcholine (ACh) release in several brain regions, including the medial pontine reticular formation (mPRF). This study tested the hypothesis that the muscarinic cholinergic receptor mediating mPRF ACh release is the pharmacologically defined M2 subtype. In vivo microdialysis was used to deliver muscarinic cholinergic receptor (MAChR) antagonists to the feline mPRF while simultaneously measuring endogenously released ACh. The lowest concentration of each antagonist that caused a significant increase in mPRF ACh release was determined and defined as the minimum ACh-releasing concentration. Data obtained from 41 mPRF dialysis sites in 10 animals showed that the order of potency (followed by the minimum ACh-releasing concentration) was scopolamine (1 nM) > AF-DX 116 (3 nM) > pirenzepine (300 nM). Comparison of these minimum ACh-releasing concentrations to the known affinities of the antagonists for the five mAChR subtypes is consistent with the conclusion that the autoreceptor regulating mPRF ACh release is the M2 subtype. Considerable evidence supports a role for cholinergic neurotransmission and postsynaptic M2 receptors in the mPRF in regulating levels of arousal. The present data suggest that presynaptic M2 receptors contribute to the regulation of arousal states by modulating mPRF ACh release.

Original languageEnglish (US)
Pages (from-to)1446-1452
Number of pages7
JournalJournal of Pharmacology and Experimental Therapeutics
Volume286
Issue number3
StatePublished - Dec 1 1998
Externally publishedYes

Fingerprint

Autoreceptors
Cholinergic Agents
Acetylcholine
Muscarinic Receptors
Arousal
Presynaptic Receptors
Pirenzepine
Scopolamine Hydrobromide
Pontine Tegmentum
Felidae
Microdialysis
Cholinergic Antagonists
Cholinergic Receptors
Synaptic Transmission
Dialysis

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Pharmacology

Cite this

@article{c5515576e173435d9440abf8242cfe53,
title = "M2 muscarinic autoreceptors modulate acetylcholine release in the medial pontine reticular formation1",
abstract = "Muscarinic autoreceptors regulate acetylcholine (ACh) release in several brain regions, including the medial pontine reticular formation (mPRF). This study tested the hypothesis that the muscarinic cholinergic receptor mediating mPRF ACh release is the pharmacologically defined M2 subtype. In vivo microdialysis was used to deliver muscarinic cholinergic receptor (MAChR) antagonists to the feline mPRF while simultaneously measuring endogenously released ACh. The lowest concentration of each antagonist that caused a significant increase in mPRF ACh release was determined and defined as the minimum ACh-releasing concentration. Data obtained from 41 mPRF dialysis sites in 10 animals showed that the order of potency (followed by the minimum ACh-releasing concentration) was scopolamine (1 nM) > AF-DX 116 (3 nM) > pirenzepine (300 nM). Comparison of these minimum ACh-releasing concentrations to the known affinities of the antagonists for the five mAChR subtypes is consistent with the conclusion that the autoreceptor regulating mPRF ACh release is the M2 subtype. Considerable evidence supports a role for cholinergic neurotransmission and postsynaptic M2 receptors in the mPRF in regulating levels of arousal. The present data suggest that presynaptic M2 receptors contribute to the regulation of arousal states by modulating mPRF ACh release.",
author = "Helen Baghdoyan and Ralph Lydic and Fleegal, {M. A.}",
year = "1998",
month = "12",
day = "1",
language = "English (US)",
volume = "286",
pages = "1446--1452",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "3",

}

TY - JOUR

T1 - M2 muscarinic autoreceptors modulate acetylcholine release in the medial pontine reticular formation1

AU - Baghdoyan, Helen

AU - Lydic, Ralph

AU - Fleegal, M. A.

PY - 1998/12/1

Y1 - 1998/12/1

N2 - Muscarinic autoreceptors regulate acetylcholine (ACh) release in several brain regions, including the medial pontine reticular formation (mPRF). This study tested the hypothesis that the muscarinic cholinergic receptor mediating mPRF ACh release is the pharmacologically defined M2 subtype. In vivo microdialysis was used to deliver muscarinic cholinergic receptor (MAChR) antagonists to the feline mPRF while simultaneously measuring endogenously released ACh. The lowest concentration of each antagonist that caused a significant increase in mPRF ACh release was determined and defined as the minimum ACh-releasing concentration. Data obtained from 41 mPRF dialysis sites in 10 animals showed that the order of potency (followed by the minimum ACh-releasing concentration) was scopolamine (1 nM) > AF-DX 116 (3 nM) > pirenzepine (300 nM). Comparison of these minimum ACh-releasing concentrations to the known affinities of the antagonists for the five mAChR subtypes is consistent with the conclusion that the autoreceptor regulating mPRF ACh release is the M2 subtype. Considerable evidence supports a role for cholinergic neurotransmission and postsynaptic M2 receptors in the mPRF in regulating levels of arousal. The present data suggest that presynaptic M2 receptors contribute to the regulation of arousal states by modulating mPRF ACh release.

AB - Muscarinic autoreceptors regulate acetylcholine (ACh) release in several brain regions, including the medial pontine reticular formation (mPRF). This study tested the hypothesis that the muscarinic cholinergic receptor mediating mPRF ACh release is the pharmacologically defined M2 subtype. In vivo microdialysis was used to deliver muscarinic cholinergic receptor (MAChR) antagonists to the feline mPRF while simultaneously measuring endogenously released ACh. The lowest concentration of each antagonist that caused a significant increase in mPRF ACh release was determined and defined as the minimum ACh-releasing concentration. Data obtained from 41 mPRF dialysis sites in 10 animals showed that the order of potency (followed by the minimum ACh-releasing concentration) was scopolamine (1 nM) > AF-DX 116 (3 nM) > pirenzepine (300 nM). Comparison of these minimum ACh-releasing concentrations to the known affinities of the antagonists for the five mAChR subtypes is consistent with the conclusion that the autoreceptor regulating mPRF ACh release is the M2 subtype. Considerable evidence supports a role for cholinergic neurotransmission and postsynaptic M2 receptors in the mPRF in regulating levels of arousal. The present data suggest that presynaptic M2 receptors contribute to the regulation of arousal states by modulating mPRF ACh release.

UR - http://www.scopus.com/inward/record.url?scp=0032160759&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032160759&partnerID=8YFLogxK

M3 - Article

VL - 286

SP - 1446

EP - 1452

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 3

ER -