Morphogenetic fields within the human dentition

A new, clinically relevant synthesis of an old concept

Grant Townsend, Edward Harris, Herve Lesot, Francois Clauss, Alan Brook

Research output: Contribution to journalArticle

50 Citations (Scopus)

Abstract

This paper reviews the concept of morphogenetic fields within the dentition that was first proposed by Butler (Butler PM. Studies of the mammalian dentition. Differentiation of the post-canine dentition. Proc Zool Soc Lond B 1939;109:1-36), then adapted for the human dentition by Dahlberg (Dahlberg AA. The changing dentition of man. J Am Dent Assoc 1945;32:676-90; Dahlberg AA. The dentition of the American Indian. In: Laughlin WS, editor. The Physical Anthropology of the American Indian. New York: Viking Fund Inc.; 1951. p. 138-76). The clone theory of dental development, proposed by Osborn (Osborn JW. Morphogenetic gradients: fields versus clones. In: Butler PM, Joysey KA, editors Development, function and evolution of teeth. London: Academic Press, 1978. p. 171-201), is then considered before these two important concepts are interpreted in the light of recent findings from molecular, cellular, genetic and theoretical and anthropological investigation. Sharpe (Sharpe PT. Homeobox genes and orofacial development. Connect Tissue Res 1995;32:17-25) put forward the concept of an odontogenic homeobox code to explain how different tooth classes are initiated in different parts of the oral cavity in response to molecular cues and the expression of specific groups of homeobox genes. Recently, Mitsiadis and Smith (Mitsiadis TA, Smith MM. How do genes make teeth to order through development? J Exp Zool (Mol Dev Evol) 2006; 306B:177-82.) proposed that the field, clone and homeobox code models could all be incorporated into a single model to explain dental patterning. We agree that these three models should be viewed as complementary rather than contradictory and propose that this unifying view can be extended into the clinical setting using findings on dental patterning in individuals with missing and extra teeth. The proposals are compatible with the unifying aetiological model developed by Brook (Brook AH. A unifying aetiological explanation for anomalies of tooth number and size. Archs Oral Biol 1984;29:373-78) based on human epidemiological and clinical findings. Indeed, this new synthesis can provide a sound foundation for clinical diagnosis, counselling and management of patients with various anomalies of dental development as well as suggesting hypotheses for future studies.

Original languageEnglish (US)
JournalArchives of Oral Biology
Volume54
Issue numberSUPPL. 1
DOIs
StatePublished - Dec 1 2009

Fingerprint

Dentition
Tooth
Homeobox Genes
eribulin
North American Indians
Clone Cells
Physical Anthropology
Anthropology
Cues
Mouth
Canidae
Counseling
Molecular Biology

All Science Journal Classification (ASJC) codes

  • Otorhinolaryngology
  • Dentistry(all)
  • Cell Biology

Cite this

Morphogenetic fields within the human dentition : A new, clinically relevant synthesis of an old concept. / Townsend, Grant; Harris, Edward; Lesot, Herve; Clauss, Francois; Brook, Alan.

In: Archives of Oral Biology, Vol. 54, No. SUPPL. 1, 01.12.2009.

Research output: Contribution to journalArticle

Townsend, Grant ; Harris, Edward ; Lesot, Herve ; Clauss, Francois ; Brook, Alan. / Morphogenetic fields within the human dentition : A new, clinically relevant synthesis of an old concept. In: Archives of Oral Biology. 2009 ; Vol. 54, No. SUPPL. 1.
@article{260aa924d01b435c9eafc12aa0d93be0,
title = "Morphogenetic fields within the human dentition: A new, clinically relevant synthesis of an old concept",
abstract = "This paper reviews the concept of morphogenetic fields within the dentition that was first proposed by Butler (Butler PM. Studies of the mammalian dentition. Differentiation of the post-canine dentition. Proc Zool Soc Lond B 1939;109:1-36), then adapted for the human dentition by Dahlberg (Dahlberg AA. The changing dentition of man. J Am Dent Assoc 1945;32:676-90; Dahlberg AA. The dentition of the American Indian. In: Laughlin WS, editor. The Physical Anthropology of the American Indian. New York: Viking Fund Inc.; 1951. p. 138-76). The clone theory of dental development, proposed by Osborn (Osborn JW. Morphogenetic gradients: fields versus clones. In: Butler PM, Joysey KA, editors Development, function and evolution of teeth. London: Academic Press, 1978. p. 171-201), is then considered before these two important concepts are interpreted in the light of recent findings from molecular, cellular, genetic and theoretical and anthropological investigation. Sharpe (Sharpe PT. Homeobox genes and orofacial development. Connect Tissue Res 1995;32:17-25) put forward the concept of an odontogenic homeobox code to explain how different tooth classes are initiated in different parts of the oral cavity in response to molecular cues and the expression of specific groups of homeobox genes. Recently, Mitsiadis and Smith (Mitsiadis TA, Smith MM. How do genes make teeth to order through development? J Exp Zool (Mol Dev Evol) 2006; 306B:177-82.) proposed that the field, clone and homeobox code models could all be incorporated into a single model to explain dental patterning. We agree that these three models should be viewed as complementary rather than contradictory and propose that this unifying view can be extended into the clinical setting using findings on dental patterning in individuals with missing and extra teeth. The proposals are compatible with the unifying aetiological model developed by Brook (Brook AH. A unifying aetiological explanation for anomalies of tooth number and size. Archs Oral Biol 1984;29:373-78) based on human epidemiological and clinical findings. Indeed, this new synthesis can provide a sound foundation for clinical diagnosis, counselling and management of patients with various anomalies of dental development as well as suggesting hypotheses for future studies.",
author = "Grant Townsend and Edward Harris and Herve Lesot and Francois Clauss and Alan Brook",
year = "2009",
month = "12",
day = "1",
doi = "10.1016/j.archoralbio.2008.06.011",
language = "English (US)",
volume = "54",
journal = "Archives of Oral Biology",
issn = "0003-9969",
publisher = "Elsevier Limited",
number = "SUPPL. 1",

}

TY - JOUR

T1 - Morphogenetic fields within the human dentition

T2 - A new, clinically relevant synthesis of an old concept

AU - Townsend, Grant

AU - Harris, Edward

AU - Lesot, Herve

AU - Clauss, Francois

AU - Brook, Alan

PY - 2009/12/1

Y1 - 2009/12/1

N2 - This paper reviews the concept of morphogenetic fields within the dentition that was first proposed by Butler (Butler PM. Studies of the mammalian dentition. Differentiation of the post-canine dentition. Proc Zool Soc Lond B 1939;109:1-36), then adapted for the human dentition by Dahlberg (Dahlberg AA. The changing dentition of man. J Am Dent Assoc 1945;32:676-90; Dahlberg AA. The dentition of the American Indian. In: Laughlin WS, editor. The Physical Anthropology of the American Indian. New York: Viking Fund Inc.; 1951. p. 138-76). The clone theory of dental development, proposed by Osborn (Osborn JW. Morphogenetic gradients: fields versus clones. In: Butler PM, Joysey KA, editors Development, function and evolution of teeth. London: Academic Press, 1978. p. 171-201), is then considered before these two important concepts are interpreted in the light of recent findings from molecular, cellular, genetic and theoretical and anthropological investigation. Sharpe (Sharpe PT. Homeobox genes and orofacial development. Connect Tissue Res 1995;32:17-25) put forward the concept of an odontogenic homeobox code to explain how different tooth classes are initiated in different parts of the oral cavity in response to molecular cues and the expression of specific groups of homeobox genes. Recently, Mitsiadis and Smith (Mitsiadis TA, Smith MM. How do genes make teeth to order through development? J Exp Zool (Mol Dev Evol) 2006; 306B:177-82.) proposed that the field, clone and homeobox code models could all be incorporated into a single model to explain dental patterning. We agree that these three models should be viewed as complementary rather than contradictory and propose that this unifying view can be extended into the clinical setting using findings on dental patterning in individuals with missing and extra teeth. The proposals are compatible with the unifying aetiological model developed by Brook (Brook AH. A unifying aetiological explanation for anomalies of tooth number and size. Archs Oral Biol 1984;29:373-78) based on human epidemiological and clinical findings. Indeed, this new synthesis can provide a sound foundation for clinical diagnosis, counselling and management of patients with various anomalies of dental development as well as suggesting hypotheses for future studies.

AB - This paper reviews the concept of morphogenetic fields within the dentition that was first proposed by Butler (Butler PM. Studies of the mammalian dentition. Differentiation of the post-canine dentition. Proc Zool Soc Lond B 1939;109:1-36), then adapted for the human dentition by Dahlberg (Dahlberg AA. The changing dentition of man. J Am Dent Assoc 1945;32:676-90; Dahlberg AA. The dentition of the American Indian. In: Laughlin WS, editor. The Physical Anthropology of the American Indian. New York: Viking Fund Inc.; 1951. p. 138-76). The clone theory of dental development, proposed by Osborn (Osborn JW. Morphogenetic gradients: fields versus clones. In: Butler PM, Joysey KA, editors Development, function and evolution of teeth. London: Academic Press, 1978. p. 171-201), is then considered before these two important concepts are interpreted in the light of recent findings from molecular, cellular, genetic and theoretical and anthropological investigation. Sharpe (Sharpe PT. Homeobox genes and orofacial development. Connect Tissue Res 1995;32:17-25) put forward the concept of an odontogenic homeobox code to explain how different tooth classes are initiated in different parts of the oral cavity in response to molecular cues and the expression of specific groups of homeobox genes. Recently, Mitsiadis and Smith (Mitsiadis TA, Smith MM. How do genes make teeth to order through development? J Exp Zool (Mol Dev Evol) 2006; 306B:177-82.) proposed that the field, clone and homeobox code models could all be incorporated into a single model to explain dental patterning. We agree that these three models should be viewed as complementary rather than contradictory and propose that this unifying view can be extended into the clinical setting using findings on dental patterning in individuals with missing and extra teeth. The proposals are compatible with the unifying aetiological model developed by Brook (Brook AH. A unifying aetiological explanation for anomalies of tooth number and size. Archs Oral Biol 1984;29:373-78) based on human epidemiological and clinical findings. Indeed, this new synthesis can provide a sound foundation for clinical diagnosis, counselling and management of patients with various anomalies of dental development as well as suggesting hypotheses for future studies.

UR - http://www.scopus.com/inward/record.url?scp=71549119512&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=71549119512&partnerID=8YFLogxK

U2 - 10.1016/j.archoralbio.2008.06.011

DO - 10.1016/j.archoralbio.2008.06.011

M3 - Article

VL - 54

JO - Archives of Oral Biology

JF - Archives of Oral Biology

SN - 0003-9969

IS - SUPPL. 1

ER -