Nociception and the differential expression of cyclooxygenase-1 (COX-1), the COX-1 variant retaining intron-1 (COX-1v), and COX-2 in mouse dorsal root ganglia (DRG)

Wenkai Dou, Yun Jiao, Sarita Goorha, Rajendra Raghow, Leslie R. Ballou

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Prostaglandins (PGs) formed via the cyclooxygenase (COX) pathway mediate hyperalgesia in sensory nerve endings. To investigate the role of the COX isoforms in pain transmission we recently studied nociception in COX-isozyme-deficient mice using models of "sharp" rapidly transmitted pain (hot-plate) and slowly developing, diffuse pain (writhing) [Ballou L, Botting RM, Goorha S, Zhang J, Vane JR. Nociception in cyclooxygenase isozyme-deficient mice. Proc Natl Acad Sci USA 2000;97:10272]. Our results demonstrated that COX-1 (and not COX-2) was the primary isoform involved in nociception in both model systems. Given the importance of dorsal root ganglia (DRG) in pain transmission we examined the expression patterns of COX-1, -2 and the recently described variant of COX-1 retaining intron-1, originally referred to as "COX-3" but hereafter referred to as COX-1 variant (COX-1v), in mouse L4 or L5 DRG taken from normal and COX-isozyme-deficient mice. Messenger RNA and protein for COX isoforms from DRG, spinal cord as well as, heart, brain, kidney, spleen and skin of adult mice were isolated and analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. Patterns of COX-isoform expression were determined using immunohistochemical techniques. We found that COX-1 and COX-1v were both expressed in neurons while COX-2 expression was completely undetectable in the DRG. Immunohistochemical analysis of COX expression in DRG of mice exhibiting the chronic pain and inflammation associated with collagen-induced arthritis (CIA) expressed COX-1 and COX-1v while no COX-2 could be detected. For purposes of comparison, COX-1v mRNA was also expressed in heart, brain, spinal cord, kidney, spleen and skin. Together, these data support a role for COX-1 and perhaps COX-1v, not COX-2, as the primary producers of PGs in mouse DRG in normal and in mice subject to chronic pain and inflammation. These data also suggest potential alternative analgesic mechanisms of action for the newly developed, COX-2 selective inhibitors and the nonsteroidal anti-inflammatory drugs (NSAIDs) in pain transmission in the peripheral nervous system.

Original languageEnglish (US)
Pages (from-to)29-43
Number of pages15
JournalProstaglandins and Other Lipid Mediators
Volume74
Issue number1-4
DOIs
StatePublished - Oct 1 2004

Fingerprint

Cyclooxygenase 1
Nociception
Spinal Ganglia
Cyclooxygenase 2
Prostaglandin-Endoperoxide Synthases
Introns
Protein Isoforms
Pain
Isoenzymes
Chronic Pain
Prostaglandins
Brain
Spinal Cord
Skin
Spleen
Inflammation
Kidney
Messenger RNA
Experimental Arthritis
Mouse Ptgs2 protein

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Physiology
  • Pharmacology
  • Cell Biology

Cite this

Nociception and the differential expression of cyclooxygenase-1 (COX-1), the COX-1 variant retaining intron-1 (COX-1v), and COX-2 in mouse dorsal root ganglia (DRG). / Dou, Wenkai; Jiao, Yun; Goorha, Sarita; Raghow, Rajendra; Ballou, Leslie R.

In: Prostaglandins and Other Lipid Mediators, Vol. 74, No. 1-4, 01.10.2004, p. 29-43.

Research output: Contribution to journalArticle

@article{948d259ecc094017a3423d57d634d4a4,
title = "Nociception and the differential expression of cyclooxygenase-1 (COX-1), the COX-1 variant retaining intron-1 (COX-1v), and COX-2 in mouse dorsal root ganglia (DRG)",
abstract = "Prostaglandins (PGs) formed via the cyclooxygenase (COX) pathway mediate hyperalgesia in sensory nerve endings. To investigate the role of the COX isoforms in pain transmission we recently studied nociception in COX-isozyme-deficient mice using models of {"}sharp{"} rapidly transmitted pain (hot-plate) and slowly developing, diffuse pain (writhing) [Ballou L, Botting RM, Goorha S, Zhang J, Vane JR. Nociception in cyclooxygenase isozyme-deficient mice. Proc Natl Acad Sci USA 2000;97:10272]. Our results demonstrated that COX-1 (and not COX-2) was the primary isoform involved in nociception in both model systems. Given the importance of dorsal root ganglia (DRG) in pain transmission we examined the expression patterns of COX-1, -2 and the recently described variant of COX-1 retaining intron-1, originally referred to as {"}COX-3{"} but hereafter referred to as COX-1 variant (COX-1v), in mouse L4 or L5 DRG taken from normal and COX-isozyme-deficient mice. Messenger RNA and protein for COX isoforms from DRG, spinal cord as well as, heart, brain, kidney, spleen and skin of adult mice were isolated and analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. Patterns of COX-isoform expression were determined using immunohistochemical techniques. We found that COX-1 and COX-1v were both expressed in neurons while COX-2 expression was completely undetectable in the DRG. Immunohistochemical analysis of COX expression in DRG of mice exhibiting the chronic pain and inflammation associated with collagen-induced arthritis (CIA) expressed COX-1 and COX-1v while no COX-2 could be detected. For purposes of comparison, COX-1v mRNA was also expressed in heart, brain, spinal cord, kidney, spleen and skin. Together, these data support a role for COX-1 and perhaps COX-1v, not COX-2, as the primary producers of PGs in mouse DRG in normal and in mice subject to chronic pain and inflammation. These data also suggest potential alternative analgesic mechanisms of action for the newly developed, COX-2 selective inhibitors and the nonsteroidal anti-inflammatory drugs (NSAIDs) in pain transmission in the peripheral nervous system.",
author = "Wenkai Dou and Yun Jiao and Sarita Goorha and Rajendra Raghow and Ballou, {Leslie R.}",
year = "2004",
month = "10",
day = "1",
doi = "10.1016/j.prostaglandins.2004.06.001",
language = "English (US)",
volume = "74",
pages = "29--43",
journal = "Prostaglandins and Other Lipid Mediators",
issn = "1098-8823",
publisher = "Elsevier Inc.",
number = "1-4",

}

TY - JOUR

T1 - Nociception and the differential expression of cyclooxygenase-1 (COX-1), the COX-1 variant retaining intron-1 (COX-1v), and COX-2 in mouse dorsal root ganglia (DRG)

AU - Dou, Wenkai

AU - Jiao, Yun

AU - Goorha, Sarita

AU - Raghow, Rajendra

AU - Ballou, Leslie R.

PY - 2004/10/1

Y1 - 2004/10/1

N2 - Prostaglandins (PGs) formed via the cyclooxygenase (COX) pathway mediate hyperalgesia in sensory nerve endings. To investigate the role of the COX isoforms in pain transmission we recently studied nociception in COX-isozyme-deficient mice using models of "sharp" rapidly transmitted pain (hot-plate) and slowly developing, diffuse pain (writhing) [Ballou L, Botting RM, Goorha S, Zhang J, Vane JR. Nociception in cyclooxygenase isozyme-deficient mice. Proc Natl Acad Sci USA 2000;97:10272]. Our results demonstrated that COX-1 (and not COX-2) was the primary isoform involved in nociception in both model systems. Given the importance of dorsal root ganglia (DRG) in pain transmission we examined the expression patterns of COX-1, -2 and the recently described variant of COX-1 retaining intron-1, originally referred to as "COX-3" but hereafter referred to as COX-1 variant (COX-1v), in mouse L4 or L5 DRG taken from normal and COX-isozyme-deficient mice. Messenger RNA and protein for COX isoforms from DRG, spinal cord as well as, heart, brain, kidney, spleen and skin of adult mice were isolated and analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. Patterns of COX-isoform expression were determined using immunohistochemical techniques. We found that COX-1 and COX-1v were both expressed in neurons while COX-2 expression was completely undetectable in the DRG. Immunohistochemical analysis of COX expression in DRG of mice exhibiting the chronic pain and inflammation associated with collagen-induced arthritis (CIA) expressed COX-1 and COX-1v while no COX-2 could be detected. For purposes of comparison, COX-1v mRNA was also expressed in heart, brain, spinal cord, kidney, spleen and skin. Together, these data support a role for COX-1 and perhaps COX-1v, not COX-2, as the primary producers of PGs in mouse DRG in normal and in mice subject to chronic pain and inflammation. These data also suggest potential alternative analgesic mechanisms of action for the newly developed, COX-2 selective inhibitors and the nonsteroidal anti-inflammatory drugs (NSAIDs) in pain transmission in the peripheral nervous system.

AB - Prostaglandins (PGs) formed via the cyclooxygenase (COX) pathway mediate hyperalgesia in sensory nerve endings. To investigate the role of the COX isoforms in pain transmission we recently studied nociception in COX-isozyme-deficient mice using models of "sharp" rapidly transmitted pain (hot-plate) and slowly developing, diffuse pain (writhing) [Ballou L, Botting RM, Goorha S, Zhang J, Vane JR. Nociception in cyclooxygenase isozyme-deficient mice. Proc Natl Acad Sci USA 2000;97:10272]. Our results demonstrated that COX-1 (and not COX-2) was the primary isoform involved in nociception in both model systems. Given the importance of dorsal root ganglia (DRG) in pain transmission we examined the expression patterns of COX-1, -2 and the recently described variant of COX-1 retaining intron-1, originally referred to as "COX-3" but hereafter referred to as COX-1 variant (COX-1v), in mouse L4 or L5 DRG taken from normal and COX-isozyme-deficient mice. Messenger RNA and protein for COX isoforms from DRG, spinal cord as well as, heart, brain, kidney, spleen and skin of adult mice were isolated and analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. Patterns of COX-isoform expression were determined using immunohistochemical techniques. We found that COX-1 and COX-1v were both expressed in neurons while COX-2 expression was completely undetectable in the DRG. Immunohistochemical analysis of COX expression in DRG of mice exhibiting the chronic pain and inflammation associated with collagen-induced arthritis (CIA) expressed COX-1 and COX-1v while no COX-2 could be detected. For purposes of comparison, COX-1v mRNA was also expressed in heart, brain, spinal cord, kidney, spleen and skin. Together, these data support a role for COX-1 and perhaps COX-1v, not COX-2, as the primary producers of PGs in mouse DRG in normal and in mice subject to chronic pain and inflammation. These data also suggest potential alternative analgesic mechanisms of action for the newly developed, COX-2 selective inhibitors and the nonsteroidal anti-inflammatory drugs (NSAIDs) in pain transmission in the peripheral nervous system.

UR - http://www.scopus.com/inward/record.url?scp=5444252568&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=5444252568&partnerID=8YFLogxK

U2 - 10.1016/j.prostaglandins.2004.06.001

DO - 10.1016/j.prostaglandins.2004.06.001

M3 - Article

C2 - 15560114

AN - SCOPUS:5444252568

VL - 74

SP - 29

EP - 43

JO - Prostaglandins and Other Lipid Mediators

JF - Prostaglandins and Other Lipid Mediators

SN - 1098-8823

IS - 1-4

ER -