Nonvolatile salt-free stabilizer for the quantification of polar imipenem and cilastatin in human plasma using hydrophilic interaction chromatography/quadrupole mass spectrometry with contamination sensitive off-axis electrospray

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

A hydrophilic interaction chromatography/mass spectrometry (HILIC-MS)-based assay for imipenem (IMP) and cilastatin (CIL) was recently reported. This orthogonal electrospray ion source-based (ORS) assay utilized nonvolatile salt (unremovable) to stabilize IMI in plasma. Unfortunately, this method was not applicable to conventional MS with off-axis spray (OAS-MS) because MS sensitivity was rapidly deteriorated by the nonvolatile salt. Therefore, we aimed to find a nonvolatile salt- and ion suppression-free approach to stabilize and measure the analytes in plasma using OAS-MS. Acetonitrile and methanol were tested to stabilize the analytes in the plasma samples. The recoveries, matrix effects and stabilities of the analytes in the stabilizer-treated samples were studied. The variations in MS signal intensities were used as the indicator of the assay ruggedness. The results show that a mixture of methanol and acetonitrile (1:1) is best for the storage and measurement of IMP and CIL in human plasma. Utilization of this precipitant not only blocked the hydrolysis of the analytes in plasma but also resulted in an ion suppression-free, fast (120 s per sample) and sensitive detection. The sensitivity obtained using the less sensitive OAS-MS (API3000, 4 pg on column) is much greater than that of the published ORS-MS-based assay (API4000, 77 pg on column). The ruggedness of the assay was demonstrated by its constant MS signal intensity. In conclusion, an improved HILIC/MS-based assay for IMP and CIL was established. The approach presented here provides a simple solution to the challenge of analyzing hydrolytically unstable β-lactam antibiotics in biological samples.

Original languageEnglish (US)
Pages (from-to)945-950
Number of pages6
JournalJournal of Mass Spectrometry
Volume48
Issue number8
DOIs
StatePublished - Aug 1 2013

Fingerprint

Plasma (human)
Chromatography
Mass spectrometry
Assays
Contamination
Salts
Plasmas
Methanol
Ions
Lactams
Ion sources
imipenem drug combination cilastatin
Hydrolysis
Anti-Bacterial Agents
Recovery

All Science Journal Classification (ASJC) codes

  • Spectroscopy

Cite this

@article{d1718208cfd14ba2a64e21419454d1c4,
title = "Nonvolatile salt-free stabilizer for the quantification of polar imipenem and cilastatin in human plasma using hydrophilic interaction chromatography/quadrupole mass spectrometry with contamination sensitive off-axis electrospray",
abstract = "A hydrophilic interaction chromatography/mass spectrometry (HILIC-MS)-based assay for imipenem (IMP) and cilastatin (CIL) was recently reported. This orthogonal electrospray ion source-based (ORS) assay utilized nonvolatile salt (unremovable) to stabilize IMI in plasma. Unfortunately, this method was not applicable to conventional MS with off-axis spray (OAS-MS) because MS sensitivity was rapidly deteriorated by the nonvolatile salt. Therefore, we aimed to find a nonvolatile salt- and ion suppression-free approach to stabilize and measure the analytes in plasma using OAS-MS. Acetonitrile and methanol were tested to stabilize the analytes in the plasma samples. The recoveries, matrix effects and stabilities of the analytes in the stabilizer-treated samples were studied. The variations in MS signal intensities were used as the indicator of the assay ruggedness. The results show that a mixture of methanol and acetonitrile (1:1) is best for the storage and measurement of IMP and CIL in human plasma. Utilization of this precipitant not only blocked the hydrolysis of the analytes in plasma but also resulted in an ion suppression-free, fast (120 s per sample) and sensitive detection. The sensitivity obtained using the less sensitive OAS-MS (API3000, 4 pg on column) is much greater than that of the published ORS-MS-based assay (API4000, 77 pg on column). The ruggedness of the assay was demonstrated by its constant MS signal intensity. In conclusion, an improved HILIC/MS-based assay for IMP and CIL was established. The approach presented here provides a simple solution to the challenge of analyzing hydrolytically unstable β-lactam antibiotics in biological samples.",
author = "Hu, {Zhe Yi} and Bradley Boucher and Steven Laizure and Herring, {Vanessa L.} and Robert Parker and William Hickerson",
year = "2013",
month = "8",
day = "1",
doi = "10.1002/jms.3240",
language = "English (US)",
volume = "48",
pages = "945--950",
journal = "Journal of Mass Spectrometry",
issn = "1076-5174",
publisher = "John Wiley and Sons Ltd",
number = "8",

}

TY - JOUR

T1 - Nonvolatile salt-free stabilizer for the quantification of polar imipenem and cilastatin in human plasma using hydrophilic interaction chromatography/quadrupole mass spectrometry with contamination sensitive off-axis electrospray

AU - Hu, Zhe Yi

AU - Boucher, Bradley

AU - Laizure, Steven

AU - Herring, Vanessa L.

AU - Parker, Robert

AU - Hickerson, William

PY - 2013/8/1

Y1 - 2013/8/1

N2 - A hydrophilic interaction chromatography/mass spectrometry (HILIC-MS)-based assay for imipenem (IMP) and cilastatin (CIL) was recently reported. This orthogonal electrospray ion source-based (ORS) assay utilized nonvolatile salt (unremovable) to stabilize IMI in plasma. Unfortunately, this method was not applicable to conventional MS with off-axis spray (OAS-MS) because MS sensitivity was rapidly deteriorated by the nonvolatile salt. Therefore, we aimed to find a nonvolatile salt- and ion suppression-free approach to stabilize and measure the analytes in plasma using OAS-MS. Acetonitrile and methanol were tested to stabilize the analytes in the plasma samples. The recoveries, matrix effects and stabilities of the analytes in the stabilizer-treated samples were studied. The variations in MS signal intensities were used as the indicator of the assay ruggedness. The results show that a mixture of methanol and acetonitrile (1:1) is best for the storage and measurement of IMP and CIL in human plasma. Utilization of this precipitant not only blocked the hydrolysis of the analytes in plasma but also resulted in an ion suppression-free, fast (120 s per sample) and sensitive detection. The sensitivity obtained using the less sensitive OAS-MS (API3000, 4 pg on column) is much greater than that of the published ORS-MS-based assay (API4000, 77 pg on column). The ruggedness of the assay was demonstrated by its constant MS signal intensity. In conclusion, an improved HILIC/MS-based assay for IMP and CIL was established. The approach presented here provides a simple solution to the challenge of analyzing hydrolytically unstable β-lactam antibiotics in biological samples.

AB - A hydrophilic interaction chromatography/mass spectrometry (HILIC-MS)-based assay for imipenem (IMP) and cilastatin (CIL) was recently reported. This orthogonal electrospray ion source-based (ORS) assay utilized nonvolatile salt (unremovable) to stabilize IMI in plasma. Unfortunately, this method was not applicable to conventional MS with off-axis spray (OAS-MS) because MS sensitivity was rapidly deteriorated by the nonvolatile salt. Therefore, we aimed to find a nonvolatile salt- and ion suppression-free approach to stabilize and measure the analytes in plasma using OAS-MS. Acetonitrile and methanol were tested to stabilize the analytes in the plasma samples. The recoveries, matrix effects and stabilities of the analytes in the stabilizer-treated samples were studied. The variations in MS signal intensities were used as the indicator of the assay ruggedness. The results show that a mixture of methanol and acetonitrile (1:1) is best for the storage and measurement of IMP and CIL in human plasma. Utilization of this precipitant not only blocked the hydrolysis of the analytes in plasma but also resulted in an ion suppression-free, fast (120 s per sample) and sensitive detection. The sensitivity obtained using the less sensitive OAS-MS (API3000, 4 pg on column) is much greater than that of the published ORS-MS-based assay (API4000, 77 pg on column). The ruggedness of the assay was demonstrated by its constant MS signal intensity. In conclusion, an improved HILIC/MS-based assay for IMP and CIL was established. The approach presented here provides a simple solution to the challenge of analyzing hydrolytically unstable β-lactam antibiotics in biological samples.

UR - http://www.scopus.com/inward/record.url?scp=84881103267&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84881103267&partnerID=8YFLogxK

U2 - 10.1002/jms.3240

DO - 10.1002/jms.3240

M3 - Article

VL - 48

SP - 945

EP - 950

JO - Journal of Mass Spectrometry

JF - Journal of Mass Spectrometry

SN - 1076-5174

IS - 8

ER -