Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-α in cerebral vascular endothelial cells

Research output: Contribution to journalArticle

151 Citations (Scopus)

Abstract

Inflammatory brain disease may damage cerebral vascular endothelium leading to cerebral blood flow dysregulation. The proinflammatory cytokine TNF-α causes oxidative stress and apoptosis in cerebral microvascular endothelial cells (CMVEC) from newborn pigs. We investigated contribution of major cellular sources of reactive oxygen species to endothelial inflammatory response. Nitric oxide synthase and xanthine oxidase inhibitors (Nω-nitro-L-arginine and allopurinol) had no effect, while mitochondrial electron transport inhibitors (CCCP, 2-thenoyltrifluoroacetone, and rotenone) attenuated TNF-α-induced superoxide (O2.-) and apoptosis. NADPH oxidase inhibitors (diphenylene iodonium and apocynin) greatly reduced TNF-α-evoked O 2.- generation and apoptosis. TNF-α rapidly increased NADPH oxidase activity in CMVEC. Nox4, the cell-specific catalytic subunit of NADPH oxidase, is highly expressed in CMVEC, contributes to basal O2.- production, and accounts for a burst of oxidative stress in response to TNF-α. Nox4 small interfering RNA, but not Nox2, knockdown prevented oxidative stress and apoptosis caused by TNF-α in CMVEC. Nox4 is colocalized with HO-2, the constitutive isoform of heme oxygenase (HO), which is critical for endothelial protection against TNF-α toxicity. The products of HO activity, bilirubin and carbon monoxide (CO, as a CO-releasing molecule, CORM-A1), inhibited Nox4-generated O2 .- and apoptosis caused by TNF-α stimulation. We conclude that Nox4 is the primary source of inflammation- and TNF-α-induced oxidative stress leading to apoptosis in brain endothelial cells. The ability of CO and bilirubin to combat TNF-α-induced oxidative stress by inhibiting Nox4 activity and/or by O2.- scavenging, taken together with close intracellular compartmentalization of HO-2 and Nox4 in cerebral vascular endothelium, may contribute to HO-2 cytoprotection against inflammatory cerebrovascular disease.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Cell Physiology
Volume296
Issue number3
DOIs
StatePublished - Mar 1 2009

Fingerprint

NADPH Oxidase
Oxidative Stress
Endothelial Cells
Carbon Monoxide
Apoptosis
Heme Oxygenase (Decyclizing)
Vascular Endothelium
Bilirubin
Cerebrovascular Circulation
Thenoyltrifluoroacetone
Carbonyl Cyanide m-Chlorophenyl Hydrazone
Cerebrovascular Disorders
Rotenone
Allopurinol
Cytoprotection
Xanthine Oxidase
Brain Diseases
Electron Transport
Nitric Oxide Synthase
Superoxides

All Science Journal Classification (ASJC) codes

  • Cell Biology
  • Physiology

Cite this

@article{d5cce6dc07fc42e7a4f579ffb8948e9b,
title = "Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-α in cerebral vascular endothelial cells",
abstract = "Inflammatory brain disease may damage cerebral vascular endothelium leading to cerebral blood flow dysregulation. The proinflammatory cytokine TNF-α causes oxidative stress and apoptosis in cerebral microvascular endothelial cells (CMVEC) from newborn pigs. We investigated contribution of major cellular sources of reactive oxygen species to endothelial inflammatory response. Nitric oxide synthase and xanthine oxidase inhibitors (Nω-nitro-L-arginine and allopurinol) had no effect, while mitochondrial electron transport inhibitors (CCCP, 2-thenoyltrifluoroacetone, and rotenone) attenuated TNF-α-induced superoxide (O2.-) and apoptosis. NADPH oxidase inhibitors (diphenylene iodonium and apocynin) greatly reduced TNF-α-evoked O 2.- generation and apoptosis. TNF-α rapidly increased NADPH oxidase activity in CMVEC. Nox4, the cell-specific catalytic subunit of NADPH oxidase, is highly expressed in CMVEC, contributes to basal O2.- production, and accounts for a burst of oxidative stress in response to TNF-α. Nox4 small interfering RNA, but not Nox2, knockdown prevented oxidative stress and apoptosis caused by TNF-α in CMVEC. Nox4 is colocalized with HO-2, the constitutive isoform of heme oxygenase (HO), which is critical for endothelial protection against TNF-α toxicity. The products of HO activity, bilirubin and carbon monoxide (CO, as a CO-releasing molecule, CORM-A1), inhibited Nox4-generated O2 .- and apoptosis caused by TNF-α stimulation. We conclude that Nox4 is the primary source of inflammation- and TNF-α-induced oxidative stress leading to apoptosis in brain endothelial cells. The ability of CO and bilirubin to combat TNF-α-induced oxidative stress by inhibiting Nox4 activity and/or by O2.- scavenging, taken together with close intracellular compartmentalization of HO-2 and Nox4 in cerebral vascular endothelium, may contribute to HO-2 cytoprotection against inflammatory cerebrovascular disease.",
author = "Shyamali Basuroy and Sujoy Bhattacharya and Charles Leffler and Elena Parfenova",
year = "2009",
month = "3",
day = "1",
doi = "10.1152/ajpcell.00381.2008",
language = "English (US)",
volume = "296",
journal = "American Journal of Physiology",
issn = "0363-6143",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-α in cerebral vascular endothelial cells

AU - Basuroy, Shyamali

AU - Bhattacharya, Sujoy

AU - Leffler, Charles

AU - Parfenova, Elena

PY - 2009/3/1

Y1 - 2009/3/1

N2 - Inflammatory brain disease may damage cerebral vascular endothelium leading to cerebral blood flow dysregulation. The proinflammatory cytokine TNF-α causes oxidative stress and apoptosis in cerebral microvascular endothelial cells (CMVEC) from newborn pigs. We investigated contribution of major cellular sources of reactive oxygen species to endothelial inflammatory response. Nitric oxide synthase and xanthine oxidase inhibitors (Nω-nitro-L-arginine and allopurinol) had no effect, while mitochondrial electron transport inhibitors (CCCP, 2-thenoyltrifluoroacetone, and rotenone) attenuated TNF-α-induced superoxide (O2.-) and apoptosis. NADPH oxidase inhibitors (diphenylene iodonium and apocynin) greatly reduced TNF-α-evoked O 2.- generation and apoptosis. TNF-α rapidly increased NADPH oxidase activity in CMVEC. Nox4, the cell-specific catalytic subunit of NADPH oxidase, is highly expressed in CMVEC, contributes to basal O2.- production, and accounts for a burst of oxidative stress in response to TNF-α. Nox4 small interfering RNA, but not Nox2, knockdown prevented oxidative stress and apoptosis caused by TNF-α in CMVEC. Nox4 is colocalized with HO-2, the constitutive isoform of heme oxygenase (HO), which is critical for endothelial protection against TNF-α toxicity. The products of HO activity, bilirubin and carbon monoxide (CO, as a CO-releasing molecule, CORM-A1), inhibited Nox4-generated O2 .- and apoptosis caused by TNF-α stimulation. We conclude that Nox4 is the primary source of inflammation- and TNF-α-induced oxidative stress leading to apoptosis in brain endothelial cells. The ability of CO and bilirubin to combat TNF-α-induced oxidative stress by inhibiting Nox4 activity and/or by O2.- scavenging, taken together with close intracellular compartmentalization of HO-2 and Nox4 in cerebral vascular endothelium, may contribute to HO-2 cytoprotection against inflammatory cerebrovascular disease.

AB - Inflammatory brain disease may damage cerebral vascular endothelium leading to cerebral blood flow dysregulation. The proinflammatory cytokine TNF-α causes oxidative stress and apoptosis in cerebral microvascular endothelial cells (CMVEC) from newborn pigs. We investigated contribution of major cellular sources of reactive oxygen species to endothelial inflammatory response. Nitric oxide synthase and xanthine oxidase inhibitors (Nω-nitro-L-arginine and allopurinol) had no effect, while mitochondrial electron transport inhibitors (CCCP, 2-thenoyltrifluoroacetone, and rotenone) attenuated TNF-α-induced superoxide (O2.-) and apoptosis. NADPH oxidase inhibitors (diphenylene iodonium and apocynin) greatly reduced TNF-α-evoked O 2.- generation and apoptosis. TNF-α rapidly increased NADPH oxidase activity in CMVEC. Nox4, the cell-specific catalytic subunit of NADPH oxidase, is highly expressed in CMVEC, contributes to basal O2.- production, and accounts for a burst of oxidative stress in response to TNF-α. Nox4 small interfering RNA, but not Nox2, knockdown prevented oxidative stress and apoptosis caused by TNF-α in CMVEC. Nox4 is colocalized with HO-2, the constitutive isoform of heme oxygenase (HO), which is critical for endothelial protection against TNF-α toxicity. The products of HO activity, bilirubin and carbon monoxide (CO, as a CO-releasing molecule, CORM-A1), inhibited Nox4-generated O2 .- and apoptosis caused by TNF-α stimulation. We conclude that Nox4 is the primary source of inflammation- and TNF-α-induced oxidative stress leading to apoptosis in brain endothelial cells. The ability of CO and bilirubin to combat TNF-α-induced oxidative stress by inhibiting Nox4 activity and/or by O2.- scavenging, taken together with close intracellular compartmentalization of HO-2 and Nox4 in cerebral vascular endothelium, may contribute to HO-2 cytoprotection against inflammatory cerebrovascular disease.

UR - http://www.scopus.com/inward/record.url?scp=65249103435&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65249103435&partnerID=8YFLogxK

U2 - 10.1152/ajpcell.00381.2008

DO - 10.1152/ajpcell.00381.2008

M3 - Article

VL - 296

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0363-6143

IS - 3

ER -