Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells

Matthew Ennis, Mingyan Zhu, Thomas Heinbockel, Abdallah Hayar

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

The group I metabotropic glutamate receptor (mGluR) subtype, mGluR1, is highly expressed on the apical dendrites of olfactory bulb mitral cells and thus may be activated by glutamate released from olfactory nerve (ON) terminals. Previous studies have shown that mGluR1 agonists directly excite mitral cells. In the present study, we investigated the involvement of mGluR1 in ON-evoked responses in mitral cells in rat olfactory bulb slices using patch-clamp electrophysiology. In voltage-clamp recordings, the average EPSC evoked by single ON shocks or brief trains of ON stimulation (six pulses at 50 Hz) in normal physiological conditions were not significantly affected by the nonselective mGluR antagonist LY341495 (50-100 μM) or the mGluR1-specific antagonist LY367385 (100 μM); ON-evoked responses were attenuated, however, in a subset (36%) of cells. In the presence of blockers of ionotropic glutamate and GABA receptors, application of the glutamate uptake inhibitors THA (300 μM) and TBOA (100 μM) revealed large-amplitude, long-duration responses to ON stimulation, whereas responses elicited by antidromic activation of mitral/tufted cells were unaffected. Magnitudes of the ON-evoked responses elicited in the presence of THA-TBOA were dependent on stimulation intensity and frequency, and were maximal during high-frequency (50-Hz) bursts of ON spikes, which occur during odor stimulation. ON-evoked responses elicited in the presence of THA-TBOA were significantly reduced or completely blocked by LY341495 or LY367385 (100 μM). These results demonstrate that glutamate transporters tightly regulate access of synaptically evoked glutamate from ON terminals to postsynaptic mGluR1s on mitral cell apical dendrites. Taken together with other findings, the present results suggest that mGluR1s may not play a major role in phasic responses to ON input, but instead may play an important role in shaping slow oscillatory activity in mitral cells and/or activity-dependent regulation of plasticity at ON-mitral cell synapses.

Original languageEnglish (US)
Pages (from-to)2233-2241
Number of pages9
JournalJournal of Neurophysiology
Volume95
Issue number4
DOIs
StatePublished - Apr 1 2006

Fingerprint

Olfactory Nerve
Metabotropic Glutamate Receptors
Olfactory Bulb
Tacrine
alpha-methyl-4-carboxyphenylglycine
LY 341495
Glutamic Acid
Dendrites
Ionotropic Glutamate Receptors
Amino Acid Transport System X-AG
Excitatory Amino Acid Antagonists
GABA Receptors
Electrophysiology
Synapses
Shock

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Physiology

Cite this

Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells. / Ennis, Matthew; Zhu, Mingyan; Heinbockel, Thomas; Hayar, Abdallah.

In: Journal of Neurophysiology, Vol. 95, No. 4, 01.04.2006, p. 2233-2241.

Research output: Contribution to journalArticle

@article{4702e0e7010e4e41ba5ad82a67adf691,
title = "Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells",
abstract = "The group I metabotropic glutamate receptor (mGluR) subtype, mGluR1, is highly expressed on the apical dendrites of olfactory bulb mitral cells and thus may be activated by glutamate released from olfactory nerve (ON) terminals. Previous studies have shown that mGluR1 agonists directly excite mitral cells. In the present study, we investigated the involvement of mGluR1 in ON-evoked responses in mitral cells in rat olfactory bulb slices using patch-clamp electrophysiology. In voltage-clamp recordings, the average EPSC evoked by single ON shocks or brief trains of ON stimulation (six pulses at 50 Hz) in normal physiological conditions were not significantly affected by the nonselective mGluR antagonist LY341495 (50-100 μM) or the mGluR1-specific antagonist LY367385 (100 μM); ON-evoked responses were attenuated, however, in a subset (36{\%}) of cells. In the presence of blockers of ionotropic glutamate and GABA receptors, application of the glutamate uptake inhibitors THA (300 μM) and TBOA (100 μM) revealed large-amplitude, long-duration responses to ON stimulation, whereas responses elicited by antidromic activation of mitral/tufted cells were unaffected. Magnitudes of the ON-evoked responses elicited in the presence of THA-TBOA were dependent on stimulation intensity and frequency, and were maximal during high-frequency (50-Hz) bursts of ON spikes, which occur during odor stimulation. ON-evoked responses elicited in the presence of THA-TBOA were significantly reduced or completely blocked by LY341495 or LY367385 (100 μM). These results demonstrate that glutamate transporters tightly regulate access of synaptically evoked glutamate from ON terminals to postsynaptic mGluR1s on mitral cell apical dendrites. Taken together with other findings, the present results suggest that mGluR1s may not play a major role in phasic responses to ON input, but instead may play an important role in shaping slow oscillatory activity in mitral cells and/or activity-dependent regulation of plasticity at ON-mitral cell synapses.",
author = "Matthew Ennis and Mingyan Zhu and Thomas Heinbockel and Abdallah Hayar",
year = "2006",
month = "4",
day = "1",
doi = "10.1152/jn.01150.2005",
language = "English (US)",
volume = "95",
pages = "2233--2241",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells

AU - Ennis, Matthew

AU - Zhu, Mingyan

AU - Heinbockel, Thomas

AU - Hayar, Abdallah

PY - 2006/4/1

Y1 - 2006/4/1

N2 - The group I metabotropic glutamate receptor (mGluR) subtype, mGluR1, is highly expressed on the apical dendrites of olfactory bulb mitral cells and thus may be activated by glutamate released from olfactory nerve (ON) terminals. Previous studies have shown that mGluR1 agonists directly excite mitral cells. In the present study, we investigated the involvement of mGluR1 in ON-evoked responses in mitral cells in rat olfactory bulb slices using patch-clamp electrophysiology. In voltage-clamp recordings, the average EPSC evoked by single ON shocks or brief trains of ON stimulation (six pulses at 50 Hz) in normal physiological conditions were not significantly affected by the nonselective mGluR antagonist LY341495 (50-100 μM) or the mGluR1-specific antagonist LY367385 (100 μM); ON-evoked responses were attenuated, however, in a subset (36%) of cells. In the presence of blockers of ionotropic glutamate and GABA receptors, application of the glutamate uptake inhibitors THA (300 μM) and TBOA (100 μM) revealed large-amplitude, long-duration responses to ON stimulation, whereas responses elicited by antidromic activation of mitral/tufted cells were unaffected. Magnitudes of the ON-evoked responses elicited in the presence of THA-TBOA were dependent on stimulation intensity and frequency, and were maximal during high-frequency (50-Hz) bursts of ON spikes, which occur during odor stimulation. ON-evoked responses elicited in the presence of THA-TBOA were significantly reduced or completely blocked by LY341495 or LY367385 (100 μM). These results demonstrate that glutamate transporters tightly regulate access of synaptically evoked glutamate from ON terminals to postsynaptic mGluR1s on mitral cell apical dendrites. Taken together with other findings, the present results suggest that mGluR1s may not play a major role in phasic responses to ON input, but instead may play an important role in shaping slow oscillatory activity in mitral cells and/or activity-dependent regulation of plasticity at ON-mitral cell synapses.

AB - The group I metabotropic glutamate receptor (mGluR) subtype, mGluR1, is highly expressed on the apical dendrites of olfactory bulb mitral cells and thus may be activated by glutamate released from olfactory nerve (ON) terminals. Previous studies have shown that mGluR1 agonists directly excite mitral cells. In the present study, we investigated the involvement of mGluR1 in ON-evoked responses in mitral cells in rat olfactory bulb slices using patch-clamp electrophysiology. In voltage-clamp recordings, the average EPSC evoked by single ON shocks or brief trains of ON stimulation (six pulses at 50 Hz) in normal physiological conditions were not significantly affected by the nonselective mGluR antagonist LY341495 (50-100 μM) or the mGluR1-specific antagonist LY367385 (100 μM); ON-evoked responses were attenuated, however, in a subset (36%) of cells. In the presence of blockers of ionotropic glutamate and GABA receptors, application of the glutamate uptake inhibitors THA (300 μM) and TBOA (100 μM) revealed large-amplitude, long-duration responses to ON stimulation, whereas responses elicited by antidromic activation of mitral/tufted cells were unaffected. Magnitudes of the ON-evoked responses elicited in the presence of THA-TBOA were dependent on stimulation intensity and frequency, and were maximal during high-frequency (50-Hz) bursts of ON spikes, which occur during odor stimulation. ON-evoked responses elicited in the presence of THA-TBOA were significantly reduced or completely blocked by LY341495 or LY367385 (100 μM). These results demonstrate that glutamate transporters tightly regulate access of synaptically evoked glutamate from ON terminals to postsynaptic mGluR1s on mitral cell apical dendrites. Taken together with other findings, the present results suggest that mGluR1s may not play a major role in phasic responses to ON input, but instead may play an important role in shaping slow oscillatory activity in mitral cells and/or activity-dependent regulation of plasticity at ON-mitral cell synapses.

UR - http://www.scopus.com/inward/record.url?scp=33646190466&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646190466&partnerID=8YFLogxK

U2 - 10.1152/jn.01150.2005

DO - 10.1152/jn.01150.2005

M3 - Article

C2 - 16394070

AN - SCOPUS:33646190466

VL - 95

SP - 2233

EP - 2241

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 4

ER -