OMP Gene Deletion Results in an Alteration in Odorant-Induced Mucosal Activity Patterns

Steven Youngentob, P. F. Kent, F. L. Margolis

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Previous behavioral work, using a complex five-odorant identification task, demonstrated that olfactory marker protein (OMP) is critically involved in odor processing to the extent that its loss results in an alteration in odorant quality perception. Exactly how the lack of OMP exerts its influence on the perception of odorant quality is unknown. However, there is considerable neurophysiological evidence that different odorants produce different spatiotemporal patterns of neural activity at the level of the mucosa and that these patterns predict the psychophysically determined perceptual relationship among odorants. In this respect, OMP gene deletion is known to result in a constellation of physiologic defects (i.e., marked reduction in the electroolfactogram (EOG) and altered response and recovery kinetics) that would be expected to alter the odorant-induced spatiotemporal activity patterns that are characteristic of different odorants. This, in turn, would be expected to alter the spatiotemporal patterning of information that results from the mucosal projection onto the bulb, thereby changing odorant quality perception. To test the hypothesis that odorant-induced mucosal activity patterns are altered in mice lacking the gene for OMP, we optically recorded the fluorescent changes in response to odorant stimulation from both the septum and turbinates of both OMP-null and control mice using a voltage-sensitive dye (di-4-ANEPPS Molecular Probes, Eugene, OR) and a Dalsa 120 x 120, 12-bit CCD camera. To maintain continuity with the previous behavioral work, the odorants 2-propanol, citral, carvone, ethylacetoacetate, and propyl acetate were again used. Each odorant was randomly presented to each mucosal surface in a Latin-Square design. The results of this study demonstrated that, for both mouse strains, there do indeed exist different spatiotemporal activity patterns for different odorants. More importantly, however, these patterns significantly differed between OMP-null and control mice. That is, although the general regions of characteristic activity for different odorants were the same in both mouse strains, the patterns in the null animals were degraded relative to controls. These data suggest therefore that the alterations in mucosal activity may serve as the substrate for the behaviorally observed changes in odorant quality perception in the null mutant.

Original languageEnglish (US)
Pages (from-to)3864-3873
Number of pages10
JournalJournal of Neurophysiology
Volume90
Issue number6
DOIs
StatePublished - Dec 1 2003
Externally publishedYes

Fingerprint

Olfactory Marker Protein
Gene Deletion
citral
Odorants

All Science Journal Classification (ASJC) codes

  • Physiology
  • Neuroscience(all)

Cite this

OMP Gene Deletion Results in an Alteration in Odorant-Induced Mucosal Activity Patterns. / Youngentob, Steven; Kent, P. F.; Margolis, F. L.

In: Journal of Neurophysiology, Vol. 90, No. 6, 01.12.2003, p. 3864-3873.

Research output: Contribution to journalArticle

@article{4aa13102859041349f3caa5a3a96214b,
title = "OMP Gene Deletion Results in an Alteration in Odorant-Induced Mucosal Activity Patterns",
abstract = "Previous behavioral work, using a complex five-odorant identification task, demonstrated that olfactory marker protein (OMP) is critically involved in odor processing to the extent that its loss results in an alteration in odorant quality perception. Exactly how the lack of OMP exerts its influence on the perception of odorant quality is unknown. However, there is considerable neurophysiological evidence that different odorants produce different spatiotemporal patterns of neural activity at the level of the mucosa and that these patterns predict the psychophysically determined perceptual relationship among odorants. In this respect, OMP gene deletion is known to result in a constellation of physiologic defects (i.e., marked reduction in the electroolfactogram (EOG) and altered response and recovery kinetics) that would be expected to alter the odorant-induced spatiotemporal activity patterns that are characteristic of different odorants. This, in turn, would be expected to alter the spatiotemporal patterning of information that results from the mucosal projection onto the bulb, thereby changing odorant quality perception. To test the hypothesis that odorant-induced mucosal activity patterns are altered in mice lacking the gene for OMP, we optically recorded the fluorescent changes in response to odorant stimulation from both the septum and turbinates of both OMP-null and control mice using a voltage-sensitive dye (di-4-ANEPPS Molecular Probes, Eugene, OR) and a Dalsa 120 x 120, 12-bit CCD camera. To maintain continuity with the previous behavioral work, the odorants 2-propanol, citral, carvone, ethylacetoacetate, and propyl acetate were again used. Each odorant was randomly presented to each mucosal surface in a Latin-Square design. The results of this study demonstrated that, for both mouse strains, there do indeed exist different spatiotemporal activity patterns for different odorants. More importantly, however, these patterns significantly differed between OMP-null and control mice. That is, although the general regions of characteristic activity for different odorants were the same in both mouse strains, the patterns in the null animals were degraded relative to controls. These data suggest therefore that the alterations in mucosal activity may serve as the substrate for the behaviorally observed changes in odorant quality perception in the null mutant.",
author = "Steven Youngentob and Kent, {P. F.} and Margolis, {F. L.}",
year = "2003",
month = "12",
day = "1",
doi = "10.1152/jn.00806.2002",
language = "English (US)",
volume = "90",
pages = "3864--3873",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - OMP Gene Deletion Results in an Alteration in Odorant-Induced Mucosal Activity Patterns

AU - Youngentob, Steven

AU - Kent, P. F.

AU - Margolis, F. L.

PY - 2003/12/1

Y1 - 2003/12/1

N2 - Previous behavioral work, using a complex five-odorant identification task, demonstrated that olfactory marker protein (OMP) is critically involved in odor processing to the extent that its loss results in an alteration in odorant quality perception. Exactly how the lack of OMP exerts its influence on the perception of odorant quality is unknown. However, there is considerable neurophysiological evidence that different odorants produce different spatiotemporal patterns of neural activity at the level of the mucosa and that these patterns predict the psychophysically determined perceptual relationship among odorants. In this respect, OMP gene deletion is known to result in a constellation of physiologic defects (i.e., marked reduction in the electroolfactogram (EOG) and altered response and recovery kinetics) that would be expected to alter the odorant-induced spatiotemporal activity patterns that are characteristic of different odorants. This, in turn, would be expected to alter the spatiotemporal patterning of information that results from the mucosal projection onto the bulb, thereby changing odorant quality perception. To test the hypothesis that odorant-induced mucosal activity patterns are altered in mice lacking the gene for OMP, we optically recorded the fluorescent changes in response to odorant stimulation from both the septum and turbinates of both OMP-null and control mice using a voltage-sensitive dye (di-4-ANEPPS Molecular Probes, Eugene, OR) and a Dalsa 120 x 120, 12-bit CCD camera. To maintain continuity with the previous behavioral work, the odorants 2-propanol, citral, carvone, ethylacetoacetate, and propyl acetate were again used. Each odorant was randomly presented to each mucosal surface in a Latin-Square design. The results of this study demonstrated that, for both mouse strains, there do indeed exist different spatiotemporal activity patterns for different odorants. More importantly, however, these patterns significantly differed between OMP-null and control mice. That is, although the general regions of characteristic activity for different odorants were the same in both mouse strains, the patterns in the null animals were degraded relative to controls. These data suggest therefore that the alterations in mucosal activity may serve as the substrate for the behaviorally observed changes in odorant quality perception in the null mutant.

AB - Previous behavioral work, using a complex five-odorant identification task, demonstrated that olfactory marker protein (OMP) is critically involved in odor processing to the extent that its loss results in an alteration in odorant quality perception. Exactly how the lack of OMP exerts its influence on the perception of odorant quality is unknown. However, there is considerable neurophysiological evidence that different odorants produce different spatiotemporal patterns of neural activity at the level of the mucosa and that these patterns predict the psychophysically determined perceptual relationship among odorants. In this respect, OMP gene deletion is known to result in a constellation of physiologic defects (i.e., marked reduction in the electroolfactogram (EOG) and altered response and recovery kinetics) that would be expected to alter the odorant-induced spatiotemporal activity patterns that are characteristic of different odorants. This, in turn, would be expected to alter the spatiotemporal patterning of information that results from the mucosal projection onto the bulb, thereby changing odorant quality perception. To test the hypothesis that odorant-induced mucosal activity patterns are altered in mice lacking the gene for OMP, we optically recorded the fluorescent changes in response to odorant stimulation from both the septum and turbinates of both OMP-null and control mice using a voltage-sensitive dye (di-4-ANEPPS Molecular Probes, Eugene, OR) and a Dalsa 120 x 120, 12-bit CCD camera. To maintain continuity with the previous behavioral work, the odorants 2-propanol, citral, carvone, ethylacetoacetate, and propyl acetate were again used. Each odorant was randomly presented to each mucosal surface in a Latin-Square design. The results of this study demonstrated that, for both mouse strains, there do indeed exist different spatiotemporal activity patterns for different odorants. More importantly, however, these patterns significantly differed between OMP-null and control mice. That is, although the general regions of characteristic activity for different odorants were the same in both mouse strains, the patterns in the null animals were degraded relative to controls. These data suggest therefore that the alterations in mucosal activity may serve as the substrate for the behaviorally observed changes in odorant quality perception in the null mutant.

UR - http://www.scopus.com/inward/record.url?scp=0346751982&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0346751982&partnerID=8YFLogxK

U2 - 10.1152/jn.00806.2002

DO - 10.1152/jn.00806.2002

M3 - Article

C2 - 12917392

AN - SCOPUS:0346751982

VL - 90

SP - 3864

EP - 3873

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 6

ER -