Physiological properties of newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons

Richard I. Hume, Marcia Honig

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal reponses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuation of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.

Original languageEnglish (US)
Pages (from-to)249-262
Number of pages14
JournalJournal of Neurobiology
Volume22
Issue number3
DOIs
StatePublished - Jan 1 1991

Fingerprint

Sympathetic Ganglia
Excitatory Postsynaptic Potentials
Synapses
Neurons
Coculture Techniques
Carbocyanines
Cholinergic Receptors
Fluorescent Dyes

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Cellular and Molecular Neuroscience

Cite this

Physiological properties of newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons. / Hume, Richard I.; Honig, Marcia.

In: Journal of Neurobiology, Vol. 22, No. 3, 01.01.1991, p. 249-262.

Research output: Contribution to journalArticle

@article{3160304581a74426ad46536718e21f5b,
title = "Physiological properties of newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons",
abstract = "We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal reponses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuation of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.",
author = "Hume, {Richard I.} and Marcia Honig",
year = "1991",
month = "1",
day = "1",
doi = "10.1002/neu.480220305",
language = "English (US)",
volume = "22",
pages = "249--262",
journal = "Developmental Neurobiology",
issn = "1932-8451",
publisher = "John Wiley and Sons Inc.",
number = "3",

}

TY - JOUR

T1 - Physiological properties of newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons

AU - Hume, Richard I.

AU - Honig, Marcia

PY - 1991/1/1

Y1 - 1991/1/1

N2 - We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal reponses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuation of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.

AB - We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal reponses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuation of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.

UR - http://www.scopus.com/inward/record.url?scp=0026032175&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026032175&partnerID=8YFLogxK

U2 - 10.1002/neu.480220305

DO - 10.1002/neu.480220305

M3 - Article

VL - 22

SP - 249

EP - 262

JO - Developmental Neurobiology

JF - Developmental Neurobiology

SN - 1932-8451

IS - 3

ER -