Properties of self-reinnervated motor units of medial gastrocnemius of cat. I. Long-term reinnervation.

Robert Foehring, G. W. Sypert, J. B. Munson

Research output: Contribution to journalArticle

67 Citations (Scopus)

Abstract

This work tested whether the membrane electrical properties of cat motoneurons, the contractile properties of their muscle units, and the normal relationships among them would be restored 9 mo after section and resuture of their muscle nerve. Properties of medial gastrocnemius (MG) motor units were examined 9 mo following section and resuture of the MG nerve in adult cats. Motoneuron electrical properties and muscle-unit contractile properties were measured. Motor units were classified on the basis of their contractile properties as type fast twitch, fast fatiguing (FF), fast twitch with intermediate fatigue resistance (FI), fast twitch, fatigue resistant (FR), or slow twitch, fatigue resistant (S) (8, 20). Muscle fibers were classified as type fast glycolytic (FG), fast oxidative glycolytic (FOG), or slow oxidative (SO) on the basis of histochemical staining for myosin adenosine triphosphatase, nicotinamide adenine dinucleotide diaphorase, and alpha-glycerophosphate dehydrogenase (48). Following 9 mo self-reinnervation, the proportions of each motor-unit type were the same as in normal control animals. Motoneuron membrane electrical properties [axonal conduction velocity, afterhyperpolarization (AHP) half-decay time, rheobase, and input resistance] also returned to control levels in those motoneurons that made functional reconnection with the muscle (as determined by ability to elicit measurable tension). The relationships among motoneuron electrical properties were normal in motoneurons making functional reconnection. Approximately 10% of MG motoneurons sampled did not elicit muscle contraction. These cells' membrane electrical properties were different from those that did elicit muscle contraction. Contractile speed and fatigue resistance of reinnervated muscle units had recovered to control levels at 9 mo postoperation. Force generation did not recover fully in type-FF units. The reduced tensions were apparently due to failure of recovery of FG muscle fiber area. Following reinnervation, relationships between motoneuron electrical and muscle-unit contractile properties were similar to controls. This was reflected in a degree of correspondence between motor-unit type and motoneuron type similar to normal units (84 vs. 86%, as defined by Ref. 61). There was a significantly increased proportion of type-SO muscle fibers and a decrease in the fast muscle fibers (especially type FOG) in 9 mo reinnervated MG. Together with the unchanged proportions of motor-unit types, this led to an estimate of average innervation ratios being increased in type-S motor units and decreased in type-FR units.(ABSTRACT TRUNCATED AT 400 WORDS)

Original languageEnglish (US)
Pages (from-to)931-946
Number of pages16
JournalJournal of Neurophysiology
Volume55
Issue number5
DOIs
StatePublished - Jan 1 1986
Externally publishedYes

Fingerprint

Motor Neurons
Cats
Muscles
Fatigue
Muscle Contraction
Glycerolphosphate Dehydrogenase
Membranes
Myosins
NAD
Cell Membrane
Staining and Labeling

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Physiology

Cite this

Properties of self-reinnervated motor units of medial gastrocnemius of cat. I. Long-term reinnervation. / Foehring, Robert; Sypert, G. W.; Munson, J. B.

In: Journal of Neurophysiology, Vol. 55, No. 5, 01.01.1986, p. 931-946.

Research output: Contribution to journalArticle

@article{fbf28cdfeeb14e8686375fb0847b5864,
title = "Properties of self-reinnervated motor units of medial gastrocnemius of cat. I. Long-term reinnervation.",
abstract = "This work tested whether the membrane electrical properties of cat motoneurons, the contractile properties of their muscle units, and the normal relationships among them would be restored 9 mo after section and resuture of their muscle nerve. Properties of medial gastrocnemius (MG) motor units were examined 9 mo following section and resuture of the MG nerve in adult cats. Motoneuron electrical properties and muscle-unit contractile properties were measured. Motor units were classified on the basis of their contractile properties as type fast twitch, fast fatiguing (FF), fast twitch with intermediate fatigue resistance (FI), fast twitch, fatigue resistant (FR), or slow twitch, fatigue resistant (S) (8, 20). Muscle fibers were classified as type fast glycolytic (FG), fast oxidative glycolytic (FOG), or slow oxidative (SO) on the basis of histochemical staining for myosin adenosine triphosphatase, nicotinamide adenine dinucleotide diaphorase, and alpha-glycerophosphate dehydrogenase (48). Following 9 mo self-reinnervation, the proportions of each motor-unit type were the same as in normal control animals. Motoneuron membrane electrical properties [axonal conduction velocity, afterhyperpolarization (AHP) half-decay time, rheobase, and input resistance] also returned to control levels in those motoneurons that made functional reconnection with the muscle (as determined by ability to elicit measurable tension). The relationships among motoneuron electrical properties were normal in motoneurons making functional reconnection. Approximately 10{\%} of MG motoneurons sampled did not elicit muscle contraction. These cells' membrane electrical properties were different from those that did elicit muscle contraction. Contractile speed and fatigue resistance of reinnervated muscle units had recovered to control levels at 9 mo postoperation. Force generation did not recover fully in type-FF units. The reduced tensions were apparently due to failure of recovery of FG muscle fiber area. Following reinnervation, relationships between motoneuron electrical and muscle-unit contractile properties were similar to controls. This was reflected in a degree of correspondence between motor-unit type and motoneuron type similar to normal units (84 vs. 86{\%}, as defined by Ref. 61). There was a significantly increased proportion of type-SO muscle fibers and a decrease in the fast muscle fibers (especially type FOG) in 9 mo reinnervated MG. Together with the unchanged proportions of motor-unit types, this led to an estimate of average innervation ratios being increased in type-S motor units and decreased in type-FR units.(ABSTRACT TRUNCATED AT 400 WORDS)",
author = "Robert Foehring and Sypert, {G. W.} and Munson, {J. B.}",
year = "1986",
month = "1",
day = "1",
doi = "10.1152/jn.1986.55.5.931",
language = "English (US)",
volume = "55",
pages = "931--946",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - Properties of self-reinnervated motor units of medial gastrocnemius of cat. I. Long-term reinnervation.

AU - Foehring, Robert

AU - Sypert, G. W.

AU - Munson, J. B.

PY - 1986/1/1

Y1 - 1986/1/1

N2 - This work tested whether the membrane electrical properties of cat motoneurons, the contractile properties of their muscle units, and the normal relationships among them would be restored 9 mo after section and resuture of their muscle nerve. Properties of medial gastrocnemius (MG) motor units were examined 9 mo following section and resuture of the MG nerve in adult cats. Motoneuron electrical properties and muscle-unit contractile properties were measured. Motor units were classified on the basis of their contractile properties as type fast twitch, fast fatiguing (FF), fast twitch with intermediate fatigue resistance (FI), fast twitch, fatigue resistant (FR), or slow twitch, fatigue resistant (S) (8, 20). Muscle fibers were classified as type fast glycolytic (FG), fast oxidative glycolytic (FOG), or slow oxidative (SO) on the basis of histochemical staining for myosin adenosine triphosphatase, nicotinamide adenine dinucleotide diaphorase, and alpha-glycerophosphate dehydrogenase (48). Following 9 mo self-reinnervation, the proportions of each motor-unit type were the same as in normal control animals. Motoneuron membrane electrical properties [axonal conduction velocity, afterhyperpolarization (AHP) half-decay time, rheobase, and input resistance] also returned to control levels in those motoneurons that made functional reconnection with the muscle (as determined by ability to elicit measurable tension). The relationships among motoneuron electrical properties were normal in motoneurons making functional reconnection. Approximately 10% of MG motoneurons sampled did not elicit muscle contraction. These cells' membrane electrical properties were different from those that did elicit muscle contraction. Contractile speed and fatigue resistance of reinnervated muscle units had recovered to control levels at 9 mo postoperation. Force generation did not recover fully in type-FF units. The reduced tensions were apparently due to failure of recovery of FG muscle fiber area. Following reinnervation, relationships between motoneuron electrical and muscle-unit contractile properties were similar to controls. This was reflected in a degree of correspondence between motor-unit type and motoneuron type similar to normal units (84 vs. 86%, as defined by Ref. 61). There was a significantly increased proportion of type-SO muscle fibers and a decrease in the fast muscle fibers (especially type FOG) in 9 mo reinnervated MG. Together with the unchanged proportions of motor-unit types, this led to an estimate of average innervation ratios being increased in type-S motor units and decreased in type-FR units.(ABSTRACT TRUNCATED AT 400 WORDS)

AB - This work tested whether the membrane electrical properties of cat motoneurons, the contractile properties of their muscle units, and the normal relationships among them would be restored 9 mo after section and resuture of their muscle nerve. Properties of medial gastrocnemius (MG) motor units were examined 9 mo following section and resuture of the MG nerve in adult cats. Motoneuron electrical properties and muscle-unit contractile properties were measured. Motor units were classified on the basis of their contractile properties as type fast twitch, fast fatiguing (FF), fast twitch with intermediate fatigue resistance (FI), fast twitch, fatigue resistant (FR), or slow twitch, fatigue resistant (S) (8, 20). Muscle fibers were classified as type fast glycolytic (FG), fast oxidative glycolytic (FOG), or slow oxidative (SO) on the basis of histochemical staining for myosin adenosine triphosphatase, nicotinamide adenine dinucleotide diaphorase, and alpha-glycerophosphate dehydrogenase (48). Following 9 mo self-reinnervation, the proportions of each motor-unit type were the same as in normal control animals. Motoneuron membrane electrical properties [axonal conduction velocity, afterhyperpolarization (AHP) half-decay time, rheobase, and input resistance] also returned to control levels in those motoneurons that made functional reconnection with the muscle (as determined by ability to elicit measurable tension). The relationships among motoneuron electrical properties were normal in motoneurons making functional reconnection. Approximately 10% of MG motoneurons sampled did not elicit muscle contraction. These cells' membrane electrical properties were different from those that did elicit muscle contraction. Contractile speed and fatigue resistance of reinnervated muscle units had recovered to control levels at 9 mo postoperation. Force generation did not recover fully in type-FF units. The reduced tensions were apparently due to failure of recovery of FG muscle fiber area. Following reinnervation, relationships between motoneuron electrical and muscle-unit contractile properties were similar to controls. This was reflected in a degree of correspondence between motor-unit type and motoneuron type similar to normal units (84 vs. 86%, as defined by Ref. 61). There was a significantly increased proportion of type-SO muscle fibers and a decrease in the fast muscle fibers (especially type FOG) in 9 mo reinnervated MG. Together with the unchanged proportions of motor-unit types, this led to an estimate of average innervation ratios being increased in type-S motor units and decreased in type-FR units.(ABSTRACT TRUNCATED AT 400 WORDS)

UR - http://www.scopus.com/inward/record.url?scp=0022718854&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022718854&partnerID=8YFLogxK

U2 - 10.1152/jn.1986.55.5.931

DO - 10.1152/jn.1986.55.5.931

M3 - Article

VL - 55

SP - 931

EP - 946

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 5

ER -