Proteome analysis of subsarcolemmal cardiomyocyte mitochondria

A comparison of different analytical platforms

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Mitochondria are complex organelles that play critical roles in diverse aspects of cellular function. Heart disease and a number of other pathologies are associated with perturbations in the molecular machinery of the mitochondria. Therefore, comprehensive, unbiased examination of the mitochondrial proteome represents a powerful approach toward system-level insights into disease mechanisms. A crucial aspect in proteomics studies is design of bioanalytical strategies that maximize coverage of the complex repertoire of mitochondrial proteins. In this study, we evaluated the performance of gel-based and gel-free multidimensional platforms for profiling of the proteome in subsarcolemmal mitochondria harvested from rat heart. We compared three different multidimensional proteome fractionation platforms: polymeric reversed-phase liquid chromatography at high pH (PLRP), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and isoelectric focusing (IEF) separations combined with liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), and bioinformatics for protein identification. Across all three platforms, a total of 1043 proteins were identified. Among the three bioanalytical strategies, SDS-PAGE followed by LC-MS/MS provided the best coverage of the mitochondrial proteome. With this platform, 890 proteins with diverse physicochemical characteristics were identified; the mitochondrial protein panel encompassed proteins with various functional roles including bioenergetics, protein import, and mitochondrial fusion. Taken together, results of this study provide a large-scale view of the proteome in subsarcolemmal mitochondria from the rat heart, and aid in the selection of optimal bioanalytical platforms for differential protein expression profiling of mitochondria in health and disease.

Original languageEnglish (US)
Pages (from-to)9285-9301
Number of pages17
JournalInternational journal of molecular sciences
Volume15
Issue number6
DOIs
StatePublished - May 26 2014

Fingerprint

proteome
Mitochondria
mitochondria
Proteome
Cardiac Myocytes
platforms
proteins
Proteins
Mass spectrometry
Liquid chromatography
liquid chromatography
mass spectroscopy
Mitochondrial Proteins
gels
Tandem Mass Spectrometry
Electrophoresis
Liquid Chromatography
Sodium Dodecyl Sulfate
Rats
Polyacrylamide Gel Electrophoresis

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Cite this

@article{3542cd8d79094d01a0c9171d452186dc,
title = "Proteome analysis of subsarcolemmal cardiomyocyte mitochondria: A comparison of different analytical platforms",
abstract = "Mitochondria are complex organelles that play critical roles in diverse aspects of cellular function. Heart disease and a number of other pathologies are associated with perturbations in the molecular machinery of the mitochondria. Therefore, comprehensive, unbiased examination of the mitochondrial proteome represents a powerful approach toward system-level insights into disease mechanisms. A crucial aspect in proteomics studies is design of bioanalytical strategies that maximize coverage of the complex repertoire of mitochondrial proteins. In this study, we evaluated the performance of gel-based and gel-free multidimensional platforms for profiling of the proteome in subsarcolemmal mitochondria harvested from rat heart. We compared three different multidimensional proteome fractionation platforms: polymeric reversed-phase liquid chromatography at high pH (PLRP), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and isoelectric focusing (IEF) separations combined with liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), and bioinformatics for protein identification. Across all three platforms, a total of 1043 proteins were identified. Among the three bioanalytical strategies, SDS-PAGE followed by LC-MS/MS provided the best coverage of the mitochondrial proteome. With this platform, 890 proteins with diverse physicochemical characteristics were identified; the mitochondrial protein panel encompassed proteins with various functional roles including bioenergetics, protein import, and mitochondrial fusion. Taken together, results of this study provide a large-scale view of the proteome in subsarcolemmal mitochondria from the rat heart, and aid in the selection of optimal bioanalytical platforms for differential protein expression profiling of mitochondria in health and disease.",
author = "Francesco Giorgianni and Diwa Koirala and Karl Weber and Sarka Beranova",
year = "2014",
month = "5",
day = "26",
doi = "10.3390/ijms15069285",
language = "English (US)",
volume = "15",
pages = "9285--9301",
journal = "International Journal of Molecular Sciences",
issn = "1661-6596",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "6",

}

TY - JOUR

T1 - Proteome analysis of subsarcolemmal cardiomyocyte mitochondria

T2 - A comparison of different analytical platforms

AU - Giorgianni, Francesco

AU - Koirala, Diwa

AU - Weber, Karl

AU - Beranova, Sarka

PY - 2014/5/26

Y1 - 2014/5/26

N2 - Mitochondria are complex organelles that play critical roles in diverse aspects of cellular function. Heart disease and a number of other pathologies are associated with perturbations in the molecular machinery of the mitochondria. Therefore, comprehensive, unbiased examination of the mitochondrial proteome represents a powerful approach toward system-level insights into disease mechanisms. A crucial aspect in proteomics studies is design of bioanalytical strategies that maximize coverage of the complex repertoire of mitochondrial proteins. In this study, we evaluated the performance of gel-based and gel-free multidimensional platforms for profiling of the proteome in subsarcolemmal mitochondria harvested from rat heart. We compared three different multidimensional proteome fractionation platforms: polymeric reversed-phase liquid chromatography at high pH (PLRP), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and isoelectric focusing (IEF) separations combined with liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), and bioinformatics for protein identification. Across all three platforms, a total of 1043 proteins were identified. Among the three bioanalytical strategies, SDS-PAGE followed by LC-MS/MS provided the best coverage of the mitochondrial proteome. With this platform, 890 proteins with diverse physicochemical characteristics were identified; the mitochondrial protein panel encompassed proteins with various functional roles including bioenergetics, protein import, and mitochondrial fusion. Taken together, results of this study provide a large-scale view of the proteome in subsarcolemmal mitochondria from the rat heart, and aid in the selection of optimal bioanalytical platforms for differential protein expression profiling of mitochondria in health and disease.

AB - Mitochondria are complex organelles that play critical roles in diverse aspects of cellular function. Heart disease and a number of other pathologies are associated with perturbations in the molecular machinery of the mitochondria. Therefore, comprehensive, unbiased examination of the mitochondrial proteome represents a powerful approach toward system-level insights into disease mechanisms. A crucial aspect in proteomics studies is design of bioanalytical strategies that maximize coverage of the complex repertoire of mitochondrial proteins. In this study, we evaluated the performance of gel-based and gel-free multidimensional platforms for profiling of the proteome in subsarcolemmal mitochondria harvested from rat heart. We compared three different multidimensional proteome fractionation platforms: polymeric reversed-phase liquid chromatography at high pH (PLRP), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and isoelectric focusing (IEF) separations combined with liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), and bioinformatics for protein identification. Across all three platforms, a total of 1043 proteins were identified. Among the three bioanalytical strategies, SDS-PAGE followed by LC-MS/MS provided the best coverage of the mitochondrial proteome. With this platform, 890 proteins with diverse physicochemical characteristics were identified; the mitochondrial protein panel encompassed proteins with various functional roles including bioenergetics, protein import, and mitochondrial fusion. Taken together, results of this study provide a large-scale view of the proteome in subsarcolemmal mitochondria from the rat heart, and aid in the selection of optimal bioanalytical platforms for differential protein expression profiling of mitochondria in health and disease.

UR - http://www.scopus.com/inward/record.url?scp=84901470569&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84901470569&partnerID=8YFLogxK

U2 - 10.3390/ijms15069285

DO - 10.3390/ijms15069285

M3 - Article

VL - 15

SP - 9285

EP - 9301

JO - International Journal of Molecular Sciences

JF - International Journal of Molecular Sciences

SN - 1661-6596

IS - 6

ER -