Regulation of episodic growth hormone secretion by the central epinephrine system. Studies in the chronically cannulated rat

L. C. Terry, W. R. Crowley, Mahlon Johnson

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

Catecholamines are postulated to regulate growth hormone (GH) secretion by their influence on the release of two hypothalamic substances, somatostatin, which inhibits GH release, and GH-releasing factor, as yet unidentified. Extensive pharmacologic studies in man and animals indicate a stimulatory effect of central norepinephrine and dopamine on GH, but the function of epiphephrine (EPI) is uncertain. Furthermore, many of the agents used to study the role of catecholamines in GH regulation are not selective in that they affect adrenergic as well as noradrenergic and/or dopaminergic neurotransmission. In the present investigation, central nervous system (CNS) EPI biosynthesis was selectively interrupted with the specific norepinephrine N-methyltransferase inhibitors, SK & F 64139 (Smith, Kline & French Laboratories) and LY 78335, (Eli Lilly & Co. Research Laboratories) and the effects of central EPI depletion on episodic GH secretion in the chronically cannulated rat model were determined. Inhibition of CNS EPI synthesis with SK & F 64139 caused complete suppression of episodic GH secretion and concomitantly reduced the EPI level in the hypothalamus without affecting dopamine or norepinephrine. Administration of LY 78335 produced similar effects on pulsatile GH. Morphine-induced, but not clonidine-induced, GH release also was blocked by SK & F 64139. These results indicate that (a) the central EPI system has a major stimulatory function in episodic GH release, (b) morphine-induced GH release is mediated by the central EPI system, and (c) clonidine stimulates GH release by activation of postsynaptic α-adrenergic receptors. Drugs that affect CNS adrenergic systems have a potential role in the diagnosis and treatment of disorders of GH secretion.

Original languageEnglish (US)
Pages (from-to)104-112
Number of pages9
JournalJournal of Clinical Investigation
Volume69
Issue number1
DOIs
StatePublished - Jan 1 1982

Fingerprint

Epinephrine
Growth Hormone
2,3-dichloro-alpha-methylbenzylamine
Clonidine
Adrenergic Agents
Morphine
Catecholamines
Dopamine
Norepinephrine
Central Nervous System
Phenylethanolamine N-Methyltransferase
Central Nervous System Agents
Growth Hormone-Releasing Hormone
Somatostatin
Synaptic Transmission
Adrenergic Receptors
Hypothalamus

All Science Journal Classification (ASJC) codes

  • Medicine(all)

Cite this

Regulation of episodic growth hormone secretion by the central epinephrine system. Studies in the chronically cannulated rat. / Terry, L. C.; Crowley, W. R.; Johnson, Mahlon.

In: Journal of Clinical Investigation, Vol. 69, No. 1, 01.01.1982, p. 104-112.

Research output: Contribution to journalArticle

@article{23de7e7f713c41aa8d0b74327341dc3e,
title = "Regulation of episodic growth hormone secretion by the central epinephrine system. Studies in the chronically cannulated rat",
abstract = "Catecholamines are postulated to regulate growth hormone (GH) secretion by their influence on the release of two hypothalamic substances, somatostatin, which inhibits GH release, and GH-releasing factor, as yet unidentified. Extensive pharmacologic studies in man and animals indicate a stimulatory effect of central norepinephrine and dopamine on GH, but the function of epiphephrine (EPI) is uncertain. Furthermore, many of the agents used to study the role of catecholamines in GH regulation are not selective in that they affect adrenergic as well as noradrenergic and/or dopaminergic neurotransmission. In the present investigation, central nervous system (CNS) EPI biosynthesis was selectively interrupted with the specific norepinephrine N-methyltransferase inhibitors, SK & F 64139 (Smith, Kline & French Laboratories) and LY 78335, (Eli Lilly & Co. Research Laboratories) and the effects of central EPI depletion on episodic GH secretion in the chronically cannulated rat model were determined. Inhibition of CNS EPI synthesis with SK & F 64139 caused complete suppression of episodic GH secretion and concomitantly reduced the EPI level in the hypothalamus without affecting dopamine or norepinephrine. Administration of LY 78335 produced similar effects on pulsatile GH. Morphine-induced, but not clonidine-induced, GH release also was blocked by SK & F 64139. These results indicate that (a) the central EPI system has a major stimulatory function in episodic GH release, (b) morphine-induced GH release is mediated by the central EPI system, and (c) clonidine stimulates GH release by activation of postsynaptic α-adrenergic receptors. Drugs that affect CNS adrenergic systems have a potential role in the diagnosis and treatment of disorders of GH secretion.",
author = "Terry, {L. C.} and Crowley, {W. R.} and Mahlon Johnson",
year = "1982",
month = "1",
day = "1",
doi = "10.1172/JCI110420",
language = "English (US)",
volume = "69",
pages = "104--112",
journal = "Journal of Clinical Investigation",
issn = "0021-9738",
publisher = "The American Society for Clinical Investigation",
number = "1",

}

TY - JOUR

T1 - Regulation of episodic growth hormone secretion by the central epinephrine system. Studies in the chronically cannulated rat

AU - Terry, L. C.

AU - Crowley, W. R.

AU - Johnson, Mahlon

PY - 1982/1/1

Y1 - 1982/1/1

N2 - Catecholamines are postulated to regulate growth hormone (GH) secretion by their influence on the release of two hypothalamic substances, somatostatin, which inhibits GH release, and GH-releasing factor, as yet unidentified. Extensive pharmacologic studies in man and animals indicate a stimulatory effect of central norepinephrine and dopamine on GH, but the function of epiphephrine (EPI) is uncertain. Furthermore, many of the agents used to study the role of catecholamines in GH regulation are not selective in that they affect adrenergic as well as noradrenergic and/or dopaminergic neurotransmission. In the present investigation, central nervous system (CNS) EPI biosynthesis was selectively interrupted with the specific norepinephrine N-methyltransferase inhibitors, SK & F 64139 (Smith, Kline & French Laboratories) and LY 78335, (Eli Lilly & Co. Research Laboratories) and the effects of central EPI depletion on episodic GH secretion in the chronically cannulated rat model were determined. Inhibition of CNS EPI synthesis with SK & F 64139 caused complete suppression of episodic GH secretion and concomitantly reduced the EPI level in the hypothalamus without affecting dopamine or norepinephrine. Administration of LY 78335 produced similar effects on pulsatile GH. Morphine-induced, but not clonidine-induced, GH release also was blocked by SK & F 64139. These results indicate that (a) the central EPI system has a major stimulatory function in episodic GH release, (b) morphine-induced GH release is mediated by the central EPI system, and (c) clonidine stimulates GH release by activation of postsynaptic α-adrenergic receptors. Drugs that affect CNS adrenergic systems have a potential role in the diagnosis and treatment of disorders of GH secretion.

AB - Catecholamines are postulated to regulate growth hormone (GH) secretion by their influence on the release of two hypothalamic substances, somatostatin, which inhibits GH release, and GH-releasing factor, as yet unidentified. Extensive pharmacologic studies in man and animals indicate a stimulatory effect of central norepinephrine and dopamine on GH, but the function of epiphephrine (EPI) is uncertain. Furthermore, many of the agents used to study the role of catecholamines in GH regulation are not selective in that they affect adrenergic as well as noradrenergic and/or dopaminergic neurotransmission. In the present investigation, central nervous system (CNS) EPI biosynthesis was selectively interrupted with the specific norepinephrine N-methyltransferase inhibitors, SK & F 64139 (Smith, Kline & French Laboratories) and LY 78335, (Eli Lilly & Co. Research Laboratories) and the effects of central EPI depletion on episodic GH secretion in the chronically cannulated rat model were determined. Inhibition of CNS EPI synthesis with SK & F 64139 caused complete suppression of episodic GH secretion and concomitantly reduced the EPI level in the hypothalamus without affecting dopamine or norepinephrine. Administration of LY 78335 produced similar effects on pulsatile GH. Morphine-induced, but not clonidine-induced, GH release also was blocked by SK & F 64139. These results indicate that (a) the central EPI system has a major stimulatory function in episodic GH release, (b) morphine-induced GH release is mediated by the central EPI system, and (c) clonidine stimulates GH release by activation of postsynaptic α-adrenergic receptors. Drugs that affect CNS adrenergic systems have a potential role in the diagnosis and treatment of disorders of GH secretion.

UR - http://www.scopus.com/inward/record.url?scp=0020059777&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0020059777&partnerID=8YFLogxK

U2 - 10.1172/JCI110420

DO - 10.1172/JCI110420

M3 - Article

VL - 69

SP - 104

EP - 112

JO - Journal of Clinical Investigation

JF - Journal of Clinical Investigation

SN - 0021-9738

IS - 1

ER -