Regulation of S-formylglutathione hydrolase by the anti-aging gene klotho

Yuechi Xu, Zhongjie Sun

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Klotho is an aging-suppressor gene. The purpose of this study is to investigate the binding sites (receptors) and function of short-form Klotho (Skl). We showed that Skl physically bound to multiple proteins. We found physical and functional interactions between Skl and S-formylglutathione hydrolase (FGH), a key enzyme in the generation of the major cellular anti-oxidant GSH, using co-immunoprecipitation-coupled mass spectrometry. We further confirmed the colocalization of Skl and FGH around the nucleus in kidney cells using immunofluorescent staining. Skl positively regulated FGH gene expression via Kid3 transcription factor. Overexpression of Skl increased FGH mRNA and protein expression while silencing of Skl attenuated FGH mRNA and protein expression. Klotho gene mutation suppressed FGH expression in red blood cells and kidneys resulting in anemia and kidney damage in mice. Overexpression of Skl increased total GSH production and the GSH/GSSG ratio, an index of antioxidant capacity, leading to a decrease in intracellular H2O2 and superoxide levels. The antioxidant activity of Skl was eliminated by silencing of FGH, indicating that Skl increased GSH via FGH. Interestingly, Skl directly interacted with FGH and regulated its function. Site-directed mutagenesis of the N-glycan-modified residues in Skl abolished its antioxidant activity, suggesting that these N-glycan moieties are important features that interact with FGH. Specific mutation of Asp to Ala at site 285 resulted in a loss of anti-oxidant activity of Skl, suggesting that N-glycosylation at site 285 is the key mechanism that determines Skl activity. Therefore, this study demonstrates, for the first time, that Skl regulates anti-oxidant GSH generation via interaction with FGH through N-glycosylation.

Original languageEnglish (US)
Pages (from-to)88259-88275
Number of pages17
JournalOncotarget
Volume8
Issue number51
DOIs
StatePublished - Jan 1 2017

Fingerprint

Hydrolases
Genes
Oxidants
Antioxidants
Kidney
Glycosylation
Polysaccharides
S-formylglutathione
Suppressor Genes
Messenger RNA
Mutation
Proteins
Glutathione Disulfide
Site-Directed Mutagenesis
Immunoprecipitation
Superoxides
Anemia
Mass Spectrometry
Transcription Factors
Erythrocytes

All Science Journal Classification (ASJC) codes

  • Oncology

Cite this

Regulation of S-formylglutathione hydrolase by the anti-aging gene klotho. / Xu, Yuechi; Sun, Zhongjie.

In: Oncotarget, Vol. 8, No. 51, 01.01.2017, p. 88259-88275.

Research output: Contribution to journalArticle

@article{5920c44c66da46f98bf8ab4f76f2cb0d,
title = "Regulation of S-formylglutathione hydrolase by the anti-aging gene klotho",
abstract = "Klotho is an aging-suppressor gene. The purpose of this study is to investigate the binding sites (receptors) and function of short-form Klotho (Skl). We showed that Skl physically bound to multiple proteins. We found physical and functional interactions between Skl and S-formylglutathione hydrolase (FGH), a key enzyme in the generation of the major cellular anti-oxidant GSH, using co-immunoprecipitation-coupled mass spectrometry. We further confirmed the colocalization of Skl and FGH around the nucleus in kidney cells using immunofluorescent staining. Skl positively regulated FGH gene expression via Kid3 transcription factor. Overexpression of Skl increased FGH mRNA and protein expression while silencing of Skl attenuated FGH mRNA and protein expression. Klotho gene mutation suppressed FGH expression in red blood cells and kidneys resulting in anemia and kidney damage in mice. Overexpression of Skl increased total GSH production and the GSH/GSSG ratio, an index of antioxidant capacity, leading to a decrease in intracellular H2O2 and superoxide levels. The antioxidant activity of Skl was eliminated by silencing of FGH, indicating that Skl increased GSH via FGH. Interestingly, Skl directly interacted with FGH and regulated its function. Site-directed mutagenesis of the N-glycan-modified residues in Skl abolished its antioxidant activity, suggesting that these N-glycan moieties are important features that interact with FGH. Specific mutation of Asp to Ala at site 285 resulted in a loss of anti-oxidant activity of Skl, suggesting that N-glycosylation at site 285 is the key mechanism that determines Skl activity. Therefore, this study demonstrates, for the first time, that Skl regulates anti-oxidant GSH generation via interaction with FGH through N-glycosylation.",
author = "Yuechi Xu and Zhongjie Sun",
year = "2017",
month = "1",
day = "1",
doi = "10.18632/oncotarget.19111",
language = "English (US)",
volume = "8",
pages = "88259--88275",
journal = "Oncotarget",
issn = "1949-2553",
publisher = "Impact Journals",
number = "51",

}

TY - JOUR

T1 - Regulation of S-formylglutathione hydrolase by the anti-aging gene klotho

AU - Xu, Yuechi

AU - Sun, Zhongjie

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Klotho is an aging-suppressor gene. The purpose of this study is to investigate the binding sites (receptors) and function of short-form Klotho (Skl). We showed that Skl physically bound to multiple proteins. We found physical and functional interactions between Skl and S-formylglutathione hydrolase (FGH), a key enzyme in the generation of the major cellular anti-oxidant GSH, using co-immunoprecipitation-coupled mass spectrometry. We further confirmed the colocalization of Skl and FGH around the nucleus in kidney cells using immunofluorescent staining. Skl positively regulated FGH gene expression via Kid3 transcription factor. Overexpression of Skl increased FGH mRNA and protein expression while silencing of Skl attenuated FGH mRNA and protein expression. Klotho gene mutation suppressed FGH expression in red blood cells and kidneys resulting in anemia and kidney damage in mice. Overexpression of Skl increased total GSH production and the GSH/GSSG ratio, an index of antioxidant capacity, leading to a decrease in intracellular H2O2 and superoxide levels. The antioxidant activity of Skl was eliminated by silencing of FGH, indicating that Skl increased GSH via FGH. Interestingly, Skl directly interacted with FGH and regulated its function. Site-directed mutagenesis of the N-glycan-modified residues in Skl abolished its antioxidant activity, suggesting that these N-glycan moieties are important features that interact with FGH. Specific mutation of Asp to Ala at site 285 resulted in a loss of anti-oxidant activity of Skl, suggesting that N-glycosylation at site 285 is the key mechanism that determines Skl activity. Therefore, this study demonstrates, for the first time, that Skl regulates anti-oxidant GSH generation via interaction with FGH through N-glycosylation.

AB - Klotho is an aging-suppressor gene. The purpose of this study is to investigate the binding sites (receptors) and function of short-form Klotho (Skl). We showed that Skl physically bound to multiple proteins. We found physical and functional interactions between Skl and S-formylglutathione hydrolase (FGH), a key enzyme in the generation of the major cellular anti-oxidant GSH, using co-immunoprecipitation-coupled mass spectrometry. We further confirmed the colocalization of Skl and FGH around the nucleus in kidney cells using immunofluorescent staining. Skl positively regulated FGH gene expression via Kid3 transcription factor. Overexpression of Skl increased FGH mRNA and protein expression while silencing of Skl attenuated FGH mRNA and protein expression. Klotho gene mutation suppressed FGH expression in red blood cells and kidneys resulting in anemia and kidney damage in mice. Overexpression of Skl increased total GSH production and the GSH/GSSG ratio, an index of antioxidant capacity, leading to a decrease in intracellular H2O2 and superoxide levels. The antioxidant activity of Skl was eliminated by silencing of FGH, indicating that Skl increased GSH via FGH. Interestingly, Skl directly interacted with FGH and regulated its function. Site-directed mutagenesis of the N-glycan-modified residues in Skl abolished its antioxidant activity, suggesting that these N-glycan moieties are important features that interact with FGH. Specific mutation of Asp to Ala at site 285 resulted in a loss of anti-oxidant activity of Skl, suggesting that N-glycosylation at site 285 is the key mechanism that determines Skl activity. Therefore, this study demonstrates, for the first time, that Skl regulates anti-oxidant GSH generation via interaction with FGH through N-glycosylation.

UR - http://www.scopus.com/inward/record.url?scp=85031944349&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85031944349&partnerID=8YFLogxK

U2 - 10.18632/oncotarget.19111

DO - 10.18632/oncotarget.19111

M3 - Article

VL - 8

SP - 88259

EP - 88275

JO - Oncotarget

JF - Oncotarget

SN - 1949-2553

IS - 51

ER -