Regulation of triacylglycerol and phospholipid trafficking by fatty acids in newborn swine enterocytes

Ying Yao, John K. Eshun, Song Lu, Helen M. Berschneider, Dennis Black

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

We (Wang H, Berschneider HM, Du J, and Black DD. Am J Physiol Gastrointest Liver Physiol 272: G935-G942, 1997; Wang H, Lu S, Du J, Yao Y, Berschneider HM, and Black DD. Am J Physiol Gastrointest Liver Physiol 280: G1137-G1144, 2001) previously showed that different fatty acids influence synthesis and secretion of triacylglycerol (TG) and phospholipid (PL) in a newborn swine enterocyte cell line (IPEC-1). The most striking effects were produced by stearic acid (SA; 18:0), which modestly affected TG and PL synthesis but reduced TG and PL secretion, and by eicosapentaenoic acid (EPA; 20:5), which reduced TG and PL synthesis and TG secretion relative to oleic acid (OA; 18:1). To define the mechanism of these effects, differentiated IPEC-1 cells were incubated for 24 h with OA, SA, or EPA and [3H]glycerol. Endoplasmic reticulum (ER) and Golgi (G) content of labeled lipids and apolipoprotein (apo) B and apoAI protein were measured. Relative to OA, SA did not impair ER TG synthesis, but reduced movement of labeled TG from ER to G. EPA impaired both ER TG synthesis and movement of labeled TG from ER to G. PL followed the same pattern, except ER synthesis of PL was relatively unaffected by EPA. Carbonate treatment demonstrated decreased partitioning of labeled lipid from ER membrane to lumen in EPA-treated cells. Organelle apoB and apoAI content demonstrated opposite patterns after SA and EPA incubation. We conclude that SA and EPA adversely influence immature enterocyte ER to G lipid trafficking, compared with OA. Furthermore, EPA inhibits ER lipid synthesis and transfer of membrane lipid to luminal particles. Regulation of apoAI ER to G trafficking is independent of that of apoB.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume282
Issue number5 45-5
StatePublished - Jun 27 2002

Fingerprint

Enterocytes
Endoplasmic Reticulum
Phospholipids
Triglycerides
Swine
Fatty Acids
Apolipoproteins B
Lipids
Eicosapentaenoic Acid
Liver
Carbonates
Oleic Acid
Membrane Lipids
Organelles
Glycerol
Cell Line
Membranes

All Science Journal Classification (ASJC) codes

  • Physiology
  • Hepatology
  • Gastroenterology
  • Physiology (medical)

Cite this

Regulation of triacylglycerol and phospholipid trafficking by fatty acids in newborn swine enterocytes. / Yao, Ying; Eshun, John K.; Lu, Song; Berschneider, Helen M.; Black, Dennis.

In: American Journal of Physiology - Gastrointestinal and Liver Physiology, Vol. 282, No. 5 45-5, 27.06.2002.

Research output: Contribution to journalArticle

@article{47447f93f0504129b6813a17a79b745f,
title = "Regulation of triacylglycerol and phospholipid trafficking by fatty acids in newborn swine enterocytes",
abstract = "We (Wang H, Berschneider HM, Du J, and Black DD. Am J Physiol Gastrointest Liver Physiol 272: G935-G942, 1997; Wang H, Lu S, Du J, Yao Y, Berschneider HM, and Black DD. Am J Physiol Gastrointest Liver Physiol 280: G1137-G1144, 2001) previously showed that different fatty acids influence synthesis and secretion of triacylglycerol (TG) and phospholipid (PL) in a newborn swine enterocyte cell line (IPEC-1). The most striking effects were produced by stearic acid (SA; 18:0), which modestly affected TG and PL synthesis but reduced TG and PL secretion, and by eicosapentaenoic acid (EPA; 20:5), which reduced TG and PL synthesis and TG secretion relative to oleic acid (OA; 18:1). To define the mechanism of these effects, differentiated IPEC-1 cells were incubated for 24 h with OA, SA, or EPA and [3H]glycerol. Endoplasmic reticulum (ER) and Golgi (G) content of labeled lipids and apolipoprotein (apo) B and apoAI protein were measured. Relative to OA, SA did not impair ER TG synthesis, but reduced movement of labeled TG from ER to G. EPA impaired both ER TG synthesis and movement of labeled TG from ER to G. PL followed the same pattern, except ER synthesis of PL was relatively unaffected by EPA. Carbonate treatment demonstrated decreased partitioning of labeled lipid from ER membrane to lumen in EPA-treated cells. Organelle apoB and apoAI content demonstrated opposite patterns after SA and EPA incubation. We conclude that SA and EPA adversely influence immature enterocyte ER to G lipid trafficking, compared with OA. Furthermore, EPA inhibits ER lipid synthesis and transfer of membrane lipid to luminal particles. Regulation of apoAI ER to G trafficking is independent of that of apoB.",
author = "Ying Yao and Eshun, {John K.} and Song Lu and Berschneider, {Helen M.} and Dennis Black",
year = "2002",
month = "6",
day = "27",
language = "English (US)",
volume = "282",
journal = "American Journal of Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "5 45-5",

}

TY - JOUR

T1 - Regulation of triacylglycerol and phospholipid trafficking by fatty acids in newborn swine enterocytes

AU - Yao, Ying

AU - Eshun, John K.

AU - Lu, Song

AU - Berschneider, Helen M.

AU - Black, Dennis

PY - 2002/6/27

Y1 - 2002/6/27

N2 - We (Wang H, Berschneider HM, Du J, and Black DD. Am J Physiol Gastrointest Liver Physiol 272: G935-G942, 1997; Wang H, Lu S, Du J, Yao Y, Berschneider HM, and Black DD. Am J Physiol Gastrointest Liver Physiol 280: G1137-G1144, 2001) previously showed that different fatty acids influence synthesis and secretion of triacylglycerol (TG) and phospholipid (PL) in a newborn swine enterocyte cell line (IPEC-1). The most striking effects were produced by stearic acid (SA; 18:0), which modestly affected TG and PL synthesis but reduced TG and PL secretion, and by eicosapentaenoic acid (EPA; 20:5), which reduced TG and PL synthesis and TG secretion relative to oleic acid (OA; 18:1). To define the mechanism of these effects, differentiated IPEC-1 cells were incubated for 24 h with OA, SA, or EPA and [3H]glycerol. Endoplasmic reticulum (ER) and Golgi (G) content of labeled lipids and apolipoprotein (apo) B and apoAI protein were measured. Relative to OA, SA did not impair ER TG synthesis, but reduced movement of labeled TG from ER to G. EPA impaired both ER TG synthesis and movement of labeled TG from ER to G. PL followed the same pattern, except ER synthesis of PL was relatively unaffected by EPA. Carbonate treatment demonstrated decreased partitioning of labeled lipid from ER membrane to lumen in EPA-treated cells. Organelle apoB and apoAI content demonstrated opposite patterns after SA and EPA incubation. We conclude that SA and EPA adversely influence immature enterocyte ER to G lipid trafficking, compared with OA. Furthermore, EPA inhibits ER lipid synthesis and transfer of membrane lipid to luminal particles. Regulation of apoAI ER to G trafficking is independent of that of apoB.

AB - We (Wang H, Berschneider HM, Du J, and Black DD. Am J Physiol Gastrointest Liver Physiol 272: G935-G942, 1997; Wang H, Lu S, Du J, Yao Y, Berschneider HM, and Black DD. Am J Physiol Gastrointest Liver Physiol 280: G1137-G1144, 2001) previously showed that different fatty acids influence synthesis and secretion of triacylglycerol (TG) and phospholipid (PL) in a newborn swine enterocyte cell line (IPEC-1). The most striking effects were produced by stearic acid (SA; 18:0), which modestly affected TG and PL synthesis but reduced TG and PL secretion, and by eicosapentaenoic acid (EPA; 20:5), which reduced TG and PL synthesis and TG secretion relative to oleic acid (OA; 18:1). To define the mechanism of these effects, differentiated IPEC-1 cells were incubated for 24 h with OA, SA, or EPA and [3H]glycerol. Endoplasmic reticulum (ER) and Golgi (G) content of labeled lipids and apolipoprotein (apo) B and apoAI protein were measured. Relative to OA, SA did not impair ER TG synthesis, but reduced movement of labeled TG from ER to G. EPA impaired both ER TG synthesis and movement of labeled TG from ER to G. PL followed the same pattern, except ER synthesis of PL was relatively unaffected by EPA. Carbonate treatment demonstrated decreased partitioning of labeled lipid from ER membrane to lumen in EPA-treated cells. Organelle apoB and apoAI content demonstrated opposite patterns after SA and EPA incubation. We conclude that SA and EPA adversely influence immature enterocyte ER to G lipid trafficking, compared with OA. Furthermore, EPA inhibits ER lipid synthesis and transfer of membrane lipid to luminal particles. Regulation of apoAI ER to G trafficking is independent of that of apoB.

UR - http://www.scopus.com/inward/record.url?scp=0036086231&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036086231&partnerID=8YFLogxK

M3 - Article

VL - 282

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 1931-857X

IS - 5 45-5

ER -