Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter

Sridhar Jaligama, Jordy Saravia, Dahui You, Nikki Yadav, Greg I. Lee, Bishwas Shrestha, Stephania Cormier

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Background: Exposure to elevated levels of particulate matter (PM) is associated with increased risk of morbidity and mortality due to respiratory tract viral infections in infants. Recent identification of environmentally persistent free radicals (EPFRs) in the PM from a variety of combustion sources suggests its role in the enhancement of disease severity of lower respiratory tract infections (LRTI). Our previous studies demonstrated that acute exposure to EPFRs induces pulmonary immunosuppression allowing for enhanced influenza disease severity. Here, we determine the mechanism of EPFR-induced immunosuppression and its impact on the immune response towards influenza infection. Methods: Neonatal mice (3 days old) were acutely exposed to DCB (combustion derived PM with chemisorbed EPFR) for seven consecutive days. Four days post-exposure (dpe), mice were infected with influenza virus. Pulmonary T cell phenotypes including regulatory T cells (Tregs) were analyzed by flow cytometry. The role of IL10 in EPFR-induced exacerbation of influenza disease severity was determined by administering recombinant IL10 (rIL10) to wild type mice or by using IL10 deficient (IL10-/-) neonatal mice. Mice were assessed for morbidity by measuring percent weight change and pulmonary viral load. Results: Neonatal mice exposed to EPFRs had a significant increase in pulmonary Tregs and the immunosuppressive cytokine IL10 following influenza infection, which coincided with decreased protective T cell responses to influenza infection at 6 dpi. Depletion of Tregs in EPFR-exposed neonatal mice resulted in increased protective, adaptive T cell responses, whereas adoptive transfer of Tregs from EPFR-exposed neonates to air-exposed neonatal mice suppressed adaptive T cell responses towards influenza infection. Further, treatment with rIL10 could recapitulate EPFR-induced exacerbation of morbidity and pulmonary viral load compared to air exposed and influenza infected mice, whereas, EPFR-exposed IL10-/- neonates exhibited significant reductions in morbidity, pulmonary viral load and adaptive T cell responses following influenza infection. Conclusions: Neonatal exposure to EPFRs induced Tregs and IL10 resulting in suppressed adaptive T cell responses and enhanced influenza disease severity in neonatal mice. Depletion of Tregs increased adaptive T cell responses and deficiency of IL10 reduced morbidity and conferred enhanced protection against influenza virus.

Original languageEnglish (US)
Article number15
JournalRespiratory research
Volume18
Issue number1
DOIs
StatePublished - Jan 13 2017

Fingerprint

Particulate Matter
Regulatory T-Lymphocytes
Interleukin-10
Free Radicals
Human Influenza
Lung
T-Lymphocytes
Morbidity
Viral Load
Infection
Orthomyxoviridae
Respiratory Tract Infections
Immunosuppression
Ultrafine
Air
Adoptive Transfer
Virus Diseases
Immunosuppressive Agents
Disease Progression
Flow Cytometry

All Science Journal Classification (ASJC) codes

  • Pulmonary and Respiratory Medicine

Cite this

Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter. / Jaligama, Sridhar; Saravia, Jordy; You, Dahui; Yadav, Nikki; Lee, Greg I.; Shrestha, Bishwas; Cormier, Stephania.

In: Respiratory research, Vol. 18, No. 1, 15, 13.01.2017.

Research output: Contribution to journalArticle

Jaligama, Sridhar ; Saravia, Jordy ; You, Dahui ; Yadav, Nikki ; Lee, Greg I. ; Shrestha, Bishwas ; Cormier, Stephania. / Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter. In: Respiratory research. 2017 ; Vol. 18, No. 1.
@article{ee990236a98546f0be61a9f1238a614e,
title = "Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter",
abstract = "Background: Exposure to elevated levels of particulate matter (PM) is associated with increased risk of morbidity and mortality due to respiratory tract viral infections in infants. Recent identification of environmentally persistent free radicals (EPFRs) in the PM from a variety of combustion sources suggests its role in the enhancement of disease severity of lower respiratory tract infections (LRTI). Our previous studies demonstrated that acute exposure to EPFRs induces pulmonary immunosuppression allowing for enhanced influenza disease severity. Here, we determine the mechanism of EPFR-induced immunosuppression and its impact on the immune response towards influenza infection. Methods: Neonatal mice (3 days old) were acutely exposed to DCB (combustion derived PM with chemisorbed EPFR) for seven consecutive days. Four days post-exposure (dpe), mice were infected with influenza virus. Pulmonary T cell phenotypes including regulatory T cells (Tregs) were analyzed by flow cytometry. The role of IL10 in EPFR-induced exacerbation of influenza disease severity was determined by administering recombinant IL10 (rIL10) to wild type mice or by using IL10 deficient (IL10-/-) neonatal mice. Mice were assessed for morbidity by measuring percent weight change and pulmonary viral load. Results: Neonatal mice exposed to EPFRs had a significant increase in pulmonary Tregs and the immunosuppressive cytokine IL10 following influenza infection, which coincided with decreased protective T cell responses to influenza infection at 6 dpi. Depletion of Tregs in EPFR-exposed neonatal mice resulted in increased protective, adaptive T cell responses, whereas adoptive transfer of Tregs from EPFR-exposed neonates to air-exposed neonatal mice suppressed adaptive T cell responses towards influenza infection. Further, treatment with rIL10 could recapitulate EPFR-induced exacerbation of morbidity and pulmonary viral load compared to air exposed and influenza infected mice, whereas, EPFR-exposed IL10-/- neonates exhibited significant reductions in morbidity, pulmonary viral load and adaptive T cell responses following influenza infection. Conclusions: Neonatal exposure to EPFRs induced Tregs and IL10 resulting in suppressed adaptive T cell responses and enhanced influenza disease severity in neonatal mice. Depletion of Tregs increased adaptive T cell responses and deficiency of IL10 reduced morbidity and conferred enhanced protection against influenza virus.",
author = "Sridhar Jaligama and Jordy Saravia and Dahui You and Nikki Yadav and Lee, {Greg I.} and Bishwas Shrestha and Stephania Cormier",
year = "2017",
month = "1",
day = "13",
doi = "10.1186/s12931-016-0487-4",
language = "English (US)",
volume = "18",
journal = "Respiratory Research",
issn = "1465-9921",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter

AU - Jaligama, Sridhar

AU - Saravia, Jordy

AU - You, Dahui

AU - Yadav, Nikki

AU - Lee, Greg I.

AU - Shrestha, Bishwas

AU - Cormier, Stephania

PY - 2017/1/13

Y1 - 2017/1/13

N2 - Background: Exposure to elevated levels of particulate matter (PM) is associated with increased risk of morbidity and mortality due to respiratory tract viral infections in infants. Recent identification of environmentally persistent free radicals (EPFRs) in the PM from a variety of combustion sources suggests its role in the enhancement of disease severity of lower respiratory tract infections (LRTI). Our previous studies demonstrated that acute exposure to EPFRs induces pulmonary immunosuppression allowing for enhanced influenza disease severity. Here, we determine the mechanism of EPFR-induced immunosuppression and its impact on the immune response towards influenza infection. Methods: Neonatal mice (3 days old) were acutely exposed to DCB (combustion derived PM with chemisorbed EPFR) for seven consecutive days. Four days post-exposure (dpe), mice were infected with influenza virus. Pulmonary T cell phenotypes including regulatory T cells (Tregs) were analyzed by flow cytometry. The role of IL10 in EPFR-induced exacerbation of influenza disease severity was determined by administering recombinant IL10 (rIL10) to wild type mice or by using IL10 deficient (IL10-/-) neonatal mice. Mice were assessed for morbidity by measuring percent weight change and pulmonary viral load. Results: Neonatal mice exposed to EPFRs had a significant increase in pulmonary Tregs and the immunosuppressive cytokine IL10 following influenza infection, which coincided with decreased protective T cell responses to influenza infection at 6 dpi. Depletion of Tregs in EPFR-exposed neonatal mice resulted in increased protective, adaptive T cell responses, whereas adoptive transfer of Tregs from EPFR-exposed neonates to air-exposed neonatal mice suppressed adaptive T cell responses towards influenza infection. Further, treatment with rIL10 could recapitulate EPFR-induced exacerbation of morbidity and pulmonary viral load compared to air exposed and influenza infected mice, whereas, EPFR-exposed IL10-/- neonates exhibited significant reductions in morbidity, pulmonary viral load and adaptive T cell responses following influenza infection. Conclusions: Neonatal exposure to EPFRs induced Tregs and IL10 resulting in suppressed adaptive T cell responses and enhanced influenza disease severity in neonatal mice. Depletion of Tregs increased adaptive T cell responses and deficiency of IL10 reduced morbidity and conferred enhanced protection against influenza virus.

AB - Background: Exposure to elevated levels of particulate matter (PM) is associated with increased risk of morbidity and mortality due to respiratory tract viral infections in infants. Recent identification of environmentally persistent free radicals (EPFRs) in the PM from a variety of combustion sources suggests its role in the enhancement of disease severity of lower respiratory tract infections (LRTI). Our previous studies demonstrated that acute exposure to EPFRs induces pulmonary immunosuppression allowing for enhanced influenza disease severity. Here, we determine the mechanism of EPFR-induced immunosuppression and its impact on the immune response towards influenza infection. Methods: Neonatal mice (3 days old) were acutely exposed to DCB (combustion derived PM with chemisorbed EPFR) for seven consecutive days. Four days post-exposure (dpe), mice were infected with influenza virus. Pulmonary T cell phenotypes including regulatory T cells (Tregs) were analyzed by flow cytometry. The role of IL10 in EPFR-induced exacerbation of influenza disease severity was determined by administering recombinant IL10 (rIL10) to wild type mice or by using IL10 deficient (IL10-/-) neonatal mice. Mice were assessed for morbidity by measuring percent weight change and pulmonary viral load. Results: Neonatal mice exposed to EPFRs had a significant increase in pulmonary Tregs and the immunosuppressive cytokine IL10 following influenza infection, which coincided with decreased protective T cell responses to influenza infection at 6 dpi. Depletion of Tregs in EPFR-exposed neonatal mice resulted in increased protective, adaptive T cell responses, whereas adoptive transfer of Tregs from EPFR-exposed neonates to air-exposed neonatal mice suppressed adaptive T cell responses towards influenza infection. Further, treatment with rIL10 could recapitulate EPFR-induced exacerbation of morbidity and pulmonary viral load compared to air exposed and influenza infected mice, whereas, EPFR-exposed IL10-/- neonates exhibited significant reductions in morbidity, pulmonary viral load and adaptive T cell responses following influenza infection. Conclusions: Neonatal exposure to EPFRs induced Tregs and IL10 resulting in suppressed adaptive T cell responses and enhanced influenza disease severity in neonatal mice. Depletion of Tregs increased adaptive T cell responses and deficiency of IL10 reduced morbidity and conferred enhanced protection against influenza virus.

UR - http://www.scopus.com/inward/record.url?scp=85009350768&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85009350768&partnerID=8YFLogxK

U2 - 10.1186/s12931-016-0487-4

DO - 10.1186/s12931-016-0487-4

M3 - Article

VL - 18

JO - Respiratory Research

JF - Respiratory Research

SN - 1465-9921

IS - 1

M1 - 15

ER -