Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance

Renata Schama, Nicolás Pedrini, M. Patricia Juárez, David Nelson, André Q. Torres, Denise Valle, Rafael D. Mesquita

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Chagas disease or American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Once known as an endemic health problem of poor rural populations in Latin American countries, it has now spread worldwide. The parasite is transmitted by triatomine bugs, of which Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) is one of the vectors and a model organism. This species occurs mainly in Central and South American countries where the disease is endemic. Disease prevention focuses on vector control programs that, in general, rely intensely on insecticide use. However, the massive use of chemical insecticides can lead to resistance. One of the major mechanisms is known as metabolic resistance that is associated with an increase in the expression or activity of detoxification genes. Three of the enzyme families that are involved in this process - carboxylesterases (CCE), glutathione s-transferases (GST) and cytochrome P450s (CYP) - are analyzed in the R. prolixus genome. A similar set of detoxification genes to those of the Hemipteran Acyrthosiphon pisum but smaller than in most dipteran species was found in R. prolixus genome. All major CCE classes (43 genes found) are present but the pheromone/hormone processing class had fewer genes than usual. One main expansion was detected on the detoxification/dietary class. The phosphotriesterase family, recently associated with insecticide resistance, was also represented with one gene. One microsomal GST gene was found and the cytosolic GST gene count (14 genes) is extremely low when compared to the other hemipteran species with sequenced genomes. However, this is similar to Apis mellifera, a species known for its deficit in detoxification genes. In R. prolixus 88 CYP genes were found, with representatives in the four clans (CYP2, CYP3, CYP4 and mitochondrial) usually found in insects. R. prolixus seems to have smaller species-specific expansions of CYP genes than mosquitoes and beetles, among others. The number of R. prolixus CYP genes is similar to the hemipteran Ac. pisum, although with a bigger expansion in CYP3 and CYP4 clans, along with several gene fragments, mostly in CYP4 clan. Eleven founding members of new families were detected, consisting of ten genes in the CYP3 clan and 1 gene in the CYP4 clan. Members of these clans were proposed to have important detoxification roles in insects. The identification of CCE, GST and CYP genes is of utmost importance for directing detoxification studies on triatomines that can help insecticide management strategies in control programs.

Original languageEnglish (US)
Pages (from-to)91-104
Number of pages14
JournalInsect Biochemistry and Molecular Biology
Volume69
DOIs
StatePublished - Feb 1 2016

Fingerprint

Rhodnius
Insecticide Resistance
Rhodnius prolixus
insecticide resistance
Insecticides
Genes
Enzymes
enzymes
genes
Detoxification
Cytochromes
cytochromes
Glutathione Transferase
transferases
Triatominae
Transferases
glutathione
Glutathione
Chagas disease
insecticides

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Insect Science

Cite this

Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance. / Schama, Renata; Pedrini, Nicolás; Juárez, M. Patricia; Nelson, David; Torres, André Q.; Valle, Denise; Mesquita, Rafael D.

In: Insect Biochemistry and Molecular Biology, Vol. 69, 01.02.2016, p. 91-104.

Research output: Contribution to journalArticle

Schama, Renata ; Pedrini, Nicolás ; Juárez, M. Patricia ; Nelson, David ; Torres, André Q. ; Valle, Denise ; Mesquita, Rafael D. / Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance. In: Insect Biochemistry and Molecular Biology. 2016 ; Vol. 69. pp. 91-104.
@article{03b40f4e316144f897846e9a6c5f1a72,
title = "Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance",
abstract = "Chagas disease or American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Once known as an endemic health problem of poor rural populations in Latin American countries, it has now spread worldwide. The parasite is transmitted by triatomine bugs, of which Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) is one of the vectors and a model organism. This species occurs mainly in Central and South American countries where the disease is endemic. Disease prevention focuses on vector control programs that, in general, rely intensely on insecticide use. However, the massive use of chemical insecticides can lead to resistance. One of the major mechanisms is known as metabolic resistance that is associated with an increase in the expression or activity of detoxification genes. Three of the enzyme families that are involved in this process - carboxylesterases (CCE), glutathione s-transferases (GST) and cytochrome P450s (CYP) - are analyzed in the R. prolixus genome. A similar set of detoxification genes to those of the Hemipteran Acyrthosiphon pisum but smaller than in most dipteran species was found in R. prolixus genome. All major CCE classes (43 genes found) are present but the pheromone/hormone processing class had fewer genes than usual. One main expansion was detected on the detoxification/dietary class. The phosphotriesterase family, recently associated with insecticide resistance, was also represented with one gene. One microsomal GST gene was found and the cytosolic GST gene count (14 genes) is extremely low when compared to the other hemipteran species with sequenced genomes. However, this is similar to Apis mellifera, a species known for its deficit in detoxification genes. In R. prolixus 88 CYP genes were found, with representatives in the four clans (CYP2, CYP3, CYP4 and mitochondrial) usually found in insects. R. prolixus seems to have smaller species-specific expansions of CYP genes than mosquitoes and beetles, among others. The number of R. prolixus CYP genes is similar to the hemipteran Ac. pisum, although with a bigger expansion in CYP3 and CYP4 clans, along with several gene fragments, mostly in CYP4 clan. Eleven founding members of new families were detected, consisting of ten genes in the CYP3 clan and 1 gene in the CYP4 clan. Members of these clans were proposed to have important detoxification roles in insects. The identification of CCE, GST and CYP genes is of utmost importance for directing detoxification studies on triatomines that can help insecticide management strategies in control programs.",
author = "Renata Schama and Nicol{\'a}s Pedrini and Ju{\'a}rez, {M. Patricia} and David Nelson and Torres, {Andr{\'e} Q.} and Denise Valle and Mesquita, {Rafael D.}",
year = "2016",
month = "2",
day = "1",
doi = "10.1016/j.ibmb.2015.06.005",
language = "English (US)",
volume = "69",
pages = "91--104",
journal = "Insect Biochemistry and Molecular Biology",
issn = "0965-1748",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance

AU - Schama, Renata

AU - Pedrini, Nicolás

AU - Juárez, M. Patricia

AU - Nelson, David

AU - Torres, André Q.

AU - Valle, Denise

AU - Mesquita, Rafael D.

PY - 2016/2/1

Y1 - 2016/2/1

N2 - Chagas disease or American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Once known as an endemic health problem of poor rural populations in Latin American countries, it has now spread worldwide. The parasite is transmitted by triatomine bugs, of which Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) is one of the vectors and a model organism. This species occurs mainly in Central and South American countries where the disease is endemic. Disease prevention focuses on vector control programs that, in general, rely intensely on insecticide use. However, the massive use of chemical insecticides can lead to resistance. One of the major mechanisms is known as metabolic resistance that is associated with an increase in the expression or activity of detoxification genes. Three of the enzyme families that are involved in this process - carboxylesterases (CCE), glutathione s-transferases (GST) and cytochrome P450s (CYP) - are analyzed in the R. prolixus genome. A similar set of detoxification genes to those of the Hemipteran Acyrthosiphon pisum but smaller than in most dipteran species was found in R. prolixus genome. All major CCE classes (43 genes found) are present but the pheromone/hormone processing class had fewer genes than usual. One main expansion was detected on the detoxification/dietary class. The phosphotriesterase family, recently associated with insecticide resistance, was also represented with one gene. One microsomal GST gene was found and the cytosolic GST gene count (14 genes) is extremely low when compared to the other hemipteran species with sequenced genomes. However, this is similar to Apis mellifera, a species known for its deficit in detoxification genes. In R. prolixus 88 CYP genes were found, with representatives in the four clans (CYP2, CYP3, CYP4 and mitochondrial) usually found in insects. R. prolixus seems to have smaller species-specific expansions of CYP genes than mosquitoes and beetles, among others. The number of R. prolixus CYP genes is similar to the hemipteran Ac. pisum, although with a bigger expansion in CYP3 and CYP4 clans, along with several gene fragments, mostly in CYP4 clan. Eleven founding members of new families were detected, consisting of ten genes in the CYP3 clan and 1 gene in the CYP4 clan. Members of these clans were proposed to have important detoxification roles in insects. The identification of CCE, GST and CYP genes is of utmost importance for directing detoxification studies on triatomines that can help insecticide management strategies in control programs.

AB - Chagas disease or American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Once known as an endemic health problem of poor rural populations in Latin American countries, it has now spread worldwide. The parasite is transmitted by triatomine bugs, of which Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) is one of the vectors and a model organism. This species occurs mainly in Central and South American countries where the disease is endemic. Disease prevention focuses on vector control programs that, in general, rely intensely on insecticide use. However, the massive use of chemical insecticides can lead to resistance. One of the major mechanisms is known as metabolic resistance that is associated with an increase in the expression or activity of detoxification genes. Three of the enzyme families that are involved in this process - carboxylesterases (CCE), glutathione s-transferases (GST) and cytochrome P450s (CYP) - are analyzed in the R. prolixus genome. A similar set of detoxification genes to those of the Hemipteran Acyrthosiphon pisum but smaller than in most dipteran species was found in R. prolixus genome. All major CCE classes (43 genes found) are present but the pheromone/hormone processing class had fewer genes than usual. One main expansion was detected on the detoxification/dietary class. The phosphotriesterase family, recently associated with insecticide resistance, was also represented with one gene. One microsomal GST gene was found and the cytosolic GST gene count (14 genes) is extremely low when compared to the other hemipteran species with sequenced genomes. However, this is similar to Apis mellifera, a species known for its deficit in detoxification genes. In R. prolixus 88 CYP genes were found, with representatives in the four clans (CYP2, CYP3, CYP4 and mitochondrial) usually found in insects. R. prolixus seems to have smaller species-specific expansions of CYP genes than mosquitoes and beetles, among others. The number of R. prolixus CYP genes is similar to the hemipteran Ac. pisum, although with a bigger expansion in CYP3 and CYP4 clans, along with several gene fragments, mostly in CYP4 clan. Eleven founding members of new families were detected, consisting of ten genes in the CYP3 clan and 1 gene in the CYP4 clan. Members of these clans were proposed to have important detoxification roles in insects. The identification of CCE, GST and CYP genes is of utmost importance for directing detoxification studies on triatomines that can help insecticide management strategies in control programs.

UR - http://www.scopus.com/inward/record.url?scp=84957976239&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84957976239&partnerID=8YFLogxK

U2 - 10.1016/j.ibmb.2015.06.005

DO - 10.1016/j.ibmb.2015.06.005

M3 - Article

VL - 69

SP - 91

EP - 104

JO - Insect Biochemistry and Molecular Biology

JF - Insect Biochemistry and Molecular Biology

SN - 0965-1748

ER -