Roles of specific Kv channel types in repolarization of the action potential in genetically identified subclasses of pyramidal neurons in mouse neocortex

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

The action potential (AP) is a fundamental feature of excitable cells that serves as the basis for longdistance signaling in the nervous system. There is considerable diversity in the appearance of APs and the underlying repolarization mechanisms in different neuronal types (reviewed in Bean BP. Nat Rev Neurosci 8: 451-465, 2007), including among pyramidal cell subtypes. In the present work, we used specific pharmacological blockers to test for contributions of Kv1, Kv2, or Kv4 channels to repolarization of single APs in two genetically defined subpopulations of pyramidal cells in layer 5 of mouse somatosensory cortex (etv1 and glt) as well as pyramidal cells from layer 2/3. These three subtypes differ in AP properties (Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P. Cereb Cortex 20: 826-836, 2010; Guan D, Armstrong WE, Foehring RC. J Neurophysiol 113: 2014-2032, 2015) as well as laminar position, morphology, and projection targets. We asked what the roles of Kv1, Kv2, and Kv4 channels are in AP repolarization and whether the underlying mechanisms are pyramidal cell subtype dependent. We found that Kv4 channels are critically involved in repolarizing neocortical pyramidal cells. There are also pyramidal cell subtype-specific differences in the role for Kv1 channels. Only Kv4 channels were involved in repolarizing the narrow APs of glt cells. In contrast, in etv1 cells and layer 2/3 cells, the broader APs are partially repolarized by Kv1 channels in addition to Kv4 channels. Consistent with their activation in the subthreshold range, Kv1 channels also regulate AP voltage threshold in all pyramidal cell subtypes.

Original languageEnglish (US)
Pages (from-to)2317-2329
Number of pages13
JournalJournal of neurophysiology
Volume115
Issue number5
DOIs
StatePublished - May 1 2016

Fingerprint

Pyramidal Cells
Neocortex
Action Potentials
Somatosensory Cortex
Nervous System
Pharmacology

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Physiology

Cite this

@article{1b24ac38db674b7b8dcf880064499b4f,
title = "Roles of specific Kv channel types in repolarization of the action potential in genetically identified subclasses of pyramidal neurons in mouse neocortex",
abstract = "The action potential (AP) is a fundamental feature of excitable cells that serves as the basis for longdistance signaling in the nervous system. There is considerable diversity in the appearance of APs and the underlying repolarization mechanisms in different neuronal types (reviewed in Bean BP. Nat Rev Neurosci 8: 451-465, 2007), including among pyramidal cell subtypes. In the present work, we used specific pharmacological blockers to test for contributions of Kv1, Kv2, or Kv4 channels to repolarization of single APs in two genetically defined subpopulations of pyramidal cells in layer 5 of mouse somatosensory cortex (etv1 and glt) as well as pyramidal cells from layer 2/3. These three subtypes differ in AP properties (Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P. Cereb Cortex 20: 826-836, 2010; Guan D, Armstrong WE, Foehring RC. J Neurophysiol 113: 2014-2032, 2015) as well as laminar position, morphology, and projection targets. We asked what the roles of Kv1, Kv2, and Kv4 channels are in AP repolarization and whether the underlying mechanisms are pyramidal cell subtype dependent. We found that Kv4 channels are critically involved in repolarizing neocortical pyramidal cells. There are also pyramidal cell subtype-specific differences in the role for Kv1 channels. Only Kv4 channels were involved in repolarizing the narrow APs of glt cells. In contrast, in etv1 cells and layer 2/3 cells, the broader APs are partially repolarized by Kv1 channels in addition to Kv4 channels. Consistent with their activation in the subthreshold range, Kv1 channels also regulate AP voltage threshold in all pyramidal cell subtypes.",
author = "Dhruba Pathak and Dongxu Guan and Robert Foehring",
year = "2016",
month = "5",
day = "1",
doi = "10.1152/jn.01028.2015",
language = "English (US)",
volume = "115",
pages = "2317--2329",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - Roles of specific Kv channel types in repolarization of the action potential in genetically identified subclasses of pyramidal neurons in mouse neocortex

AU - Pathak, Dhruba

AU - Guan, Dongxu

AU - Foehring, Robert

PY - 2016/5/1

Y1 - 2016/5/1

N2 - The action potential (AP) is a fundamental feature of excitable cells that serves as the basis for longdistance signaling in the nervous system. There is considerable diversity in the appearance of APs and the underlying repolarization mechanisms in different neuronal types (reviewed in Bean BP. Nat Rev Neurosci 8: 451-465, 2007), including among pyramidal cell subtypes. In the present work, we used specific pharmacological blockers to test for contributions of Kv1, Kv2, or Kv4 channels to repolarization of single APs in two genetically defined subpopulations of pyramidal cells in layer 5 of mouse somatosensory cortex (etv1 and glt) as well as pyramidal cells from layer 2/3. These three subtypes differ in AP properties (Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P. Cereb Cortex 20: 826-836, 2010; Guan D, Armstrong WE, Foehring RC. J Neurophysiol 113: 2014-2032, 2015) as well as laminar position, morphology, and projection targets. We asked what the roles of Kv1, Kv2, and Kv4 channels are in AP repolarization and whether the underlying mechanisms are pyramidal cell subtype dependent. We found that Kv4 channels are critically involved in repolarizing neocortical pyramidal cells. There are also pyramidal cell subtype-specific differences in the role for Kv1 channels. Only Kv4 channels were involved in repolarizing the narrow APs of glt cells. In contrast, in etv1 cells and layer 2/3 cells, the broader APs are partially repolarized by Kv1 channels in addition to Kv4 channels. Consistent with their activation in the subthreshold range, Kv1 channels also regulate AP voltage threshold in all pyramidal cell subtypes.

AB - The action potential (AP) is a fundamental feature of excitable cells that serves as the basis for longdistance signaling in the nervous system. There is considerable diversity in the appearance of APs and the underlying repolarization mechanisms in different neuronal types (reviewed in Bean BP. Nat Rev Neurosci 8: 451-465, 2007), including among pyramidal cell subtypes. In the present work, we used specific pharmacological blockers to test for contributions of Kv1, Kv2, or Kv4 channels to repolarization of single APs in two genetically defined subpopulations of pyramidal cells in layer 5 of mouse somatosensory cortex (etv1 and glt) as well as pyramidal cells from layer 2/3. These three subtypes differ in AP properties (Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P. Cereb Cortex 20: 826-836, 2010; Guan D, Armstrong WE, Foehring RC. J Neurophysiol 113: 2014-2032, 2015) as well as laminar position, morphology, and projection targets. We asked what the roles of Kv1, Kv2, and Kv4 channels are in AP repolarization and whether the underlying mechanisms are pyramidal cell subtype dependent. We found that Kv4 channels are critically involved in repolarizing neocortical pyramidal cells. There are also pyramidal cell subtype-specific differences in the role for Kv1 channels. Only Kv4 channels were involved in repolarizing the narrow APs of glt cells. In contrast, in etv1 cells and layer 2/3 cells, the broader APs are partially repolarized by Kv1 channels in addition to Kv4 channels. Consistent with their activation in the subthreshold range, Kv1 channels also regulate AP voltage threshold in all pyramidal cell subtypes.

UR - http://www.scopus.com/inward/record.url?scp=84984643882&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84984643882&partnerID=8YFLogxK

U2 - 10.1152/jn.01028.2015

DO - 10.1152/jn.01028.2015

M3 - Article

VL - 115

SP - 2317

EP - 2329

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 5

ER -