Skeletal muscle function during the progression of cancer cachexia in the male Apc Min/+ mouse

Brandon N. VanderVeen, Justin P. Hardee, Dennis K. Fix, James Carson

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

While cancer-induced skeletal muscle wasting has been widely investigated, the drivers of cancer-induced muscle functional decrements are only beginning to be understood. Decreased muscle function impacts cancer patient quality of life and health status, and several potential therapeutics have failed in clinical trials due to a lack of functional improvement. Furthermore, systemic inflammation and intrinsic inflammatory signaling's role in the cachectic disruption of muscle function requires further investigation. We examined skeletal muscle functional properties during cancer cachexia and determined their relationship to systemic and intrinsic cachexia indices. Male ApcMin/+ (MIN) mice were stratified by percent body weight loss into weight stable (WS; <5% loss) or cachectic (CX; >5% loss). Age-matched C57BL/6 littermates served as controls. Tibialis anterior (TA) twitch properties, tetanic force, and fatigability were examined in situ. TA protein and mRNA expression were examined in the nonstimulated leg. CX decreased muscle mass, tetanic force (Po), and specific tetanic force (sPo). Whole body and muscle fatigability were increased in WS and CX. CX had slower contraction rates, +dP/d t and -dP/d t, which were inversely associated with muscle signal transducer and activator of transcription 3 ( STAT3) and p65 activation. STAT3 and p65 activation were also inversely associated with Po. However, STAT3 was not related to sPo or fatigue. Muscle suppressor of cytokine signaling 3 mRNA expression was negatively associated with TA weight, Po, and sPo but not fatigue. Our study demonstrates that multiple functional deficits that occur with cancer cachexia are associated with increased muscle inflammatory signaling. Notably, muscle fatigability is increased in the MIN mouse before cachexia development. NEW & NOTEWORTHY Recent studies have identified decrements in skeletal muscle function during cachexia. We have extended these studies by directly relating decrements in muscle function to established cachexia indices. Our results demonstrate that a slow-fatigable contractile phenotype is developed during the progression of cachexia that coincides with increased muscle inflammatory signaling. Furthermore, regression analysis identified predictors of cancer-induced muscle dysfunction. Last, we report the novel finding that whole body and muscle fatigability were increased before cachexia development.

Original languageEnglish (US)
Pages (from-to)684-695
Number of pages12
JournalJournal of applied physiology (Bethesda, Md. : 1985)
Volume124
Issue number3
DOIs
StatePublished - Mar 1 2018

Fingerprint

Cachexia
Skeletal Muscle
Muscles
Neoplasms
STAT3 Transcription Factor
Muscle Neoplasms
Fatigue
Weights and Measures
Messenger RNA
Health Status
Weight Loss
Leg
Body Weight
Regression Analysis
Quality of Life
Clinical Trials
Cytokines
Inflammation

All Science Journal Classification (ASJC) codes

  • Physiology
  • Physiology (medical)

Cite this

Skeletal muscle function during the progression of cancer cachexia in the male Apc Min/+ mouse . / VanderVeen, Brandon N.; Hardee, Justin P.; Fix, Dennis K.; Carson, James.

In: Journal of applied physiology (Bethesda, Md. : 1985), Vol. 124, No. 3, 01.03.2018, p. 684-695.

Research output: Contribution to journalArticle

@article{7c572b03e4354ddba6acee65f93affd5,
title = "Skeletal muscle function during the progression of cancer cachexia in the male Apc Min/+ mouse",
abstract = "While cancer-induced skeletal muscle wasting has been widely investigated, the drivers of cancer-induced muscle functional decrements are only beginning to be understood. Decreased muscle function impacts cancer patient quality of life and health status, and several potential therapeutics have failed in clinical trials due to a lack of functional improvement. Furthermore, systemic inflammation and intrinsic inflammatory signaling's role in the cachectic disruption of muscle function requires further investigation. We examined skeletal muscle functional properties during cancer cachexia and determined their relationship to systemic and intrinsic cachexia indices. Male ApcMin/+ (MIN) mice were stratified by percent body weight loss into weight stable (WS; <5{\%} loss) or cachectic (CX; >5{\%} loss). Age-matched C57BL/6 littermates served as controls. Tibialis anterior (TA) twitch properties, tetanic force, and fatigability were examined in situ. TA protein and mRNA expression were examined in the nonstimulated leg. CX decreased muscle mass, tetanic force (Po), and specific tetanic force (sPo). Whole body and muscle fatigability were increased in WS and CX. CX had slower contraction rates, +dP/d t and -dP/d t, which were inversely associated with muscle signal transducer and activator of transcription 3 ( STAT3) and p65 activation. STAT3 and p65 activation were also inversely associated with Po. However, STAT3 was not related to sPo or fatigue. Muscle suppressor of cytokine signaling 3 mRNA expression was negatively associated with TA weight, Po, and sPo but not fatigue. Our study demonstrates that multiple functional deficits that occur with cancer cachexia are associated with increased muscle inflammatory signaling. Notably, muscle fatigability is increased in the MIN mouse before cachexia development. NEW & NOTEWORTHY Recent studies have identified decrements in skeletal muscle function during cachexia. We have extended these studies by directly relating decrements in muscle function to established cachexia indices. Our results demonstrate that a slow-fatigable contractile phenotype is developed during the progression of cachexia that coincides with increased muscle inflammatory signaling. Furthermore, regression analysis identified predictors of cancer-induced muscle dysfunction. Last, we report the novel finding that whole body and muscle fatigability were increased before cachexia development.",
author = "VanderVeen, {Brandon N.} and Hardee, {Justin P.} and Fix, {Dennis K.} and James Carson",
year = "2018",
month = "3",
day = "1",
doi = "10.1152/japplphysiol.00897.2017",
language = "English (US)",
volume = "124",
pages = "684--695",
journal = "Journal of Applied Physiology",
issn = "8750-7587",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Skeletal muscle function during the progression of cancer cachexia in the male Apc Min/+ mouse

AU - VanderVeen, Brandon N.

AU - Hardee, Justin P.

AU - Fix, Dennis K.

AU - Carson, James

PY - 2018/3/1

Y1 - 2018/3/1

N2 - While cancer-induced skeletal muscle wasting has been widely investigated, the drivers of cancer-induced muscle functional decrements are only beginning to be understood. Decreased muscle function impacts cancer patient quality of life and health status, and several potential therapeutics have failed in clinical trials due to a lack of functional improvement. Furthermore, systemic inflammation and intrinsic inflammatory signaling's role in the cachectic disruption of muscle function requires further investigation. We examined skeletal muscle functional properties during cancer cachexia and determined their relationship to systemic and intrinsic cachexia indices. Male ApcMin/+ (MIN) mice were stratified by percent body weight loss into weight stable (WS; <5% loss) or cachectic (CX; >5% loss). Age-matched C57BL/6 littermates served as controls. Tibialis anterior (TA) twitch properties, tetanic force, and fatigability were examined in situ. TA protein and mRNA expression were examined in the nonstimulated leg. CX decreased muscle mass, tetanic force (Po), and specific tetanic force (sPo). Whole body and muscle fatigability were increased in WS and CX. CX had slower contraction rates, +dP/d t and -dP/d t, which were inversely associated with muscle signal transducer and activator of transcription 3 ( STAT3) and p65 activation. STAT3 and p65 activation were also inversely associated with Po. However, STAT3 was not related to sPo or fatigue. Muscle suppressor of cytokine signaling 3 mRNA expression was negatively associated with TA weight, Po, and sPo but not fatigue. Our study demonstrates that multiple functional deficits that occur with cancer cachexia are associated with increased muscle inflammatory signaling. Notably, muscle fatigability is increased in the MIN mouse before cachexia development. NEW & NOTEWORTHY Recent studies have identified decrements in skeletal muscle function during cachexia. We have extended these studies by directly relating decrements in muscle function to established cachexia indices. Our results demonstrate that a slow-fatigable contractile phenotype is developed during the progression of cachexia that coincides with increased muscle inflammatory signaling. Furthermore, regression analysis identified predictors of cancer-induced muscle dysfunction. Last, we report the novel finding that whole body and muscle fatigability were increased before cachexia development.

AB - While cancer-induced skeletal muscle wasting has been widely investigated, the drivers of cancer-induced muscle functional decrements are only beginning to be understood. Decreased muscle function impacts cancer patient quality of life and health status, and several potential therapeutics have failed in clinical trials due to a lack of functional improvement. Furthermore, systemic inflammation and intrinsic inflammatory signaling's role in the cachectic disruption of muscle function requires further investigation. We examined skeletal muscle functional properties during cancer cachexia and determined their relationship to systemic and intrinsic cachexia indices. Male ApcMin/+ (MIN) mice were stratified by percent body weight loss into weight stable (WS; <5% loss) or cachectic (CX; >5% loss). Age-matched C57BL/6 littermates served as controls. Tibialis anterior (TA) twitch properties, tetanic force, and fatigability were examined in situ. TA protein and mRNA expression were examined in the nonstimulated leg. CX decreased muscle mass, tetanic force (Po), and specific tetanic force (sPo). Whole body and muscle fatigability were increased in WS and CX. CX had slower contraction rates, +dP/d t and -dP/d t, which were inversely associated with muscle signal transducer and activator of transcription 3 ( STAT3) and p65 activation. STAT3 and p65 activation were also inversely associated with Po. However, STAT3 was not related to sPo or fatigue. Muscle suppressor of cytokine signaling 3 mRNA expression was negatively associated with TA weight, Po, and sPo but not fatigue. Our study demonstrates that multiple functional deficits that occur with cancer cachexia are associated with increased muscle inflammatory signaling. Notably, muscle fatigability is increased in the MIN mouse before cachexia development. NEW & NOTEWORTHY Recent studies have identified decrements in skeletal muscle function during cachexia. We have extended these studies by directly relating decrements in muscle function to established cachexia indices. Our results demonstrate that a slow-fatigable contractile phenotype is developed during the progression of cachexia that coincides with increased muscle inflammatory signaling. Furthermore, regression analysis identified predictors of cancer-induced muscle dysfunction. Last, we report the novel finding that whole body and muscle fatigability were increased before cachexia development.

UR - http://www.scopus.com/inward/record.url?scp=85052012928&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85052012928&partnerID=8YFLogxK

U2 - 10.1152/japplphysiol.00897.2017

DO - 10.1152/japplphysiol.00897.2017

M3 - Article

VL - 124

SP - 684

EP - 695

JO - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 8750-7587

IS - 3

ER -